A HIGH-PRECISION MOTION SCOPE DATA STREAMING PIPELINE FOR LCLS-II FAST WIRE SCANNER

Ziyu Huang, SLAC National Accelerator Laboratory zyhuang@slac.stanford.edu

21/Sep/2025

OUTLINE

LCLS-II FAST WIRE SCANNER SOFTWARE UPGRADE

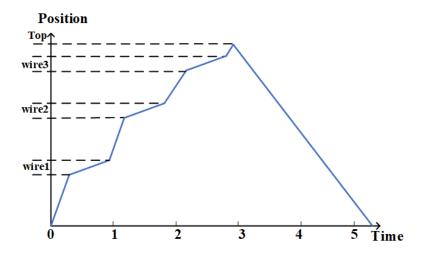
LCLS-II Fast Wire Scanner Upgrade

Wire Scanner:

- ➤ Wire scanner is one of the primary diagnostic tools to measure the transverse profile of the electron beam at LCLS-II.
- ➤ LCLS-II has 20 operating fast wire scanners:
 - Controlled the Aerotech Ensemble controller with position feedback;
 - Aiming to measure the beam transverse profile.
- ➤ LCLS-II is capable of delivering X-ray pulses at repetition rates up to 1MHz:
 - The motion control software for LCLS-II fast wire scanners is upgrade at 2023 to meet the measurement requirement.

Fig.1: LCLS-II Wire Scanner in Undulator Hall

LCLS-II Fast Wire Scanner Upgrade

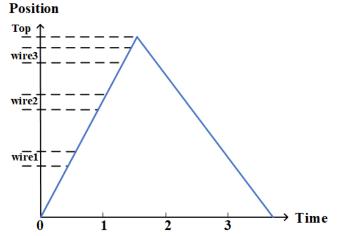


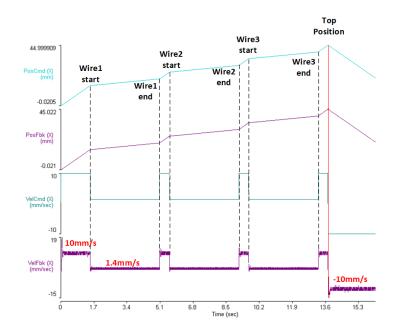
Design Requirement:

- ➤ LCLS-II beam repetition rate can be continuously adjusted from 1Hz to 1 MHz.
 - Step mode: Wire scanner approaches scan start position with 10mm/s, then scans with a desired speed less then 10mm/s;
 - Continuous mode: Wire scanner moves to the top position with only the desired speed.

Software Architecture:

- Aerotech controller execute motion profile, and monitor faults that may occur;
- ➤ EPICS Layer controls scan modes, set parameters to Aerotech controller.




Fig.2: Step Scan Trajectory and Continuous Scan Trajectory


LCLS-II Fast Wire Scanner Upgrade

Filed Commissioning:

- ➤ Wire scanner moved in 1.4mm/s in step mode and takes 13.7s move to the top position;
- In continuous mode, the wire scanner can be accelerated into 400mm/s within 77μs and decelerated to 0mm/s within 26μs;
- ➤ All the 20 fast wire scanners' motion control software in LCLS-II have been upgraded.

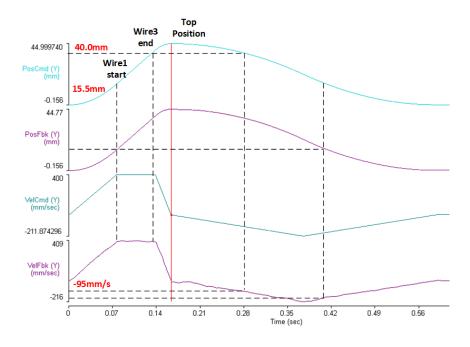


Fig.3b: Continuous Scan Scope Data from Controller

A HIGH-PRECISION MOTION SCOPE DATA STREAMING PIPELINE

Disadvantage of current motion scope data:

- Scope data from Aerotech controller:
 - High-precision but has to be physically connected to the controller via Ethernet cable.
- ➤ The motion scope data from Archiver Viewer:
 - Data is low-resolution, with loss of detail;
 - Data can only be retrieved after few minutes.

Design Requirement:

- ➤ High-precision and high-resolution motion scope data must be acquired after scan;
- The data acquisition frequency must be dynamically adjusted to match beam rate up to 1MHz;
- ➤ The total scan duration can vary from under one second to over 3 minutes.

Fig.4: Step Scan Scope Data from Archiver Viewer

Software Architecture:

- > Aerotech Layer:
 - Directly drives motion and collects hardware data;
 - Executes precise trajectories, captures signals in real-time, and ensures reliable scanner operation.
- Scope Data Layer:
 - Processes high-speed controller streams using Python asyncio package,
 - Converting acquisitions into EPICS waveform PVs for storage.
- EPICS Layer:
 - Coordinates overall motion control, integrates parameters with processed data;
 - Archives data efficiently in EPICS.

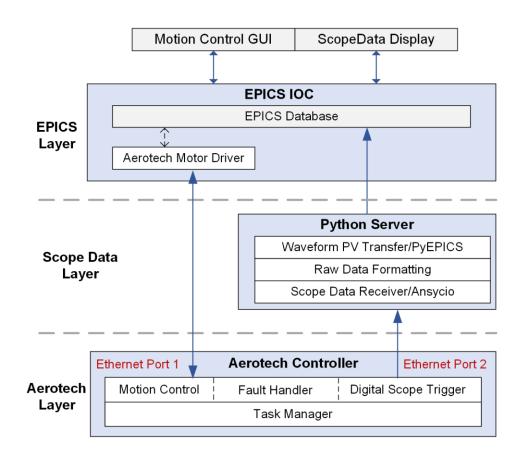


Fig.5: Scope Data Pipeline Software Architecture

Adaptive Data Down Sample:

- The Aerotech controller collects four types of scope data at 1000 Hz:
 - Position command
 - Position feedback
 - Current command
 - Current feedback
- ➤ To reduce transmission load, downsampling adjusts frequency based on scan velocity while maintaining sufficient resolution;
- After downsampling, datasets shrink to about 38,400 points total:
 - One set of the maximum data points of slow scan is 9600 per type.

Scan Velocity (mm/s)	DS Factor	Scan Time (s)	Data Points (one type)
0.04 – 0.5	50	300 – 480	9,600
0.5 – 1	40	200 – 300	5,000 – 7,500
1 – 1.5	30	120 – 200	4,000 – 6,667
1.5 – 5	20	60 – 120	3,000 - 6,000
5 – 10	15	30 – 60	2,000 – 4,000
10 – 20	10	3 – 30	300 – 3,000
20 – 40	5	1 – 3	200 – 600
≥40	3	≤1	≤ 333

Table 1: Downsample Factors by Scan Velocity

Scope Data Streaming Pipeline Workflow:

- **1. Initialize Scan**: IOC retrieves beam parameters, sends motion settings to the Aerotech controller;
- **2. Start Motion**: Controller enables motor, triggers digital scope, and begins acquiring motion data;
- **3.** Complete or Fault detected:
 - If success: motor returns home and deactivated,
 - If failure: fault handler retracts motor safely while continuing data collection;
- **4. Store and Retrieve Data**: Controller saves scope data locally, then EPICS IOC triggers Python program, retrieves scope data from controller;
- 5. Plot Results: Plot Scope data on PyDM GUI, and archive data into EPICS Archiver Appliance.

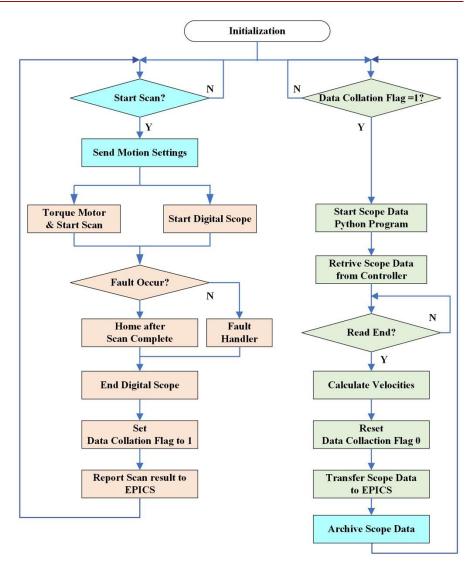


Fig.6: Scope Data Pipeline Workflow

Main Control Panel GUI:

- Displays beam and wire parameters to users with essential information in a simple manner;
- Provides expert-level data and functions in other 8 selectable widgets;
- Controller Task can be managed from GUI;
- ➤ A progress bar can indicates the status of scope data:
 - Scope Data Collecting;
 - Scope Data Retrieving;
 - Drawing Scope Data;
 - Scope Data Arrived.

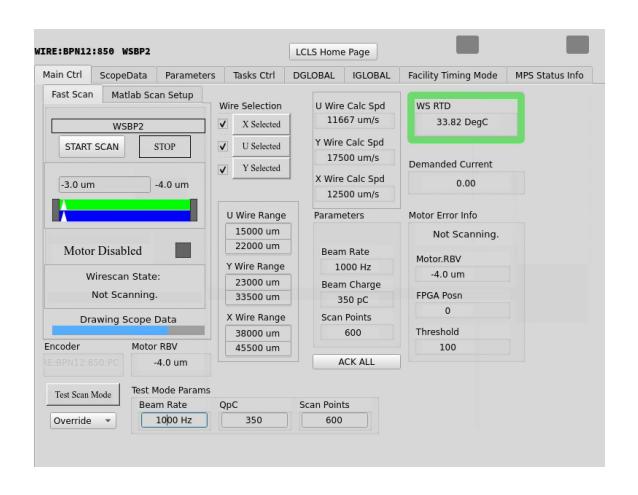


Fig.7: Main Fast Wire Scanner Control GUI

Scope Data Display:

- The scope data profile can be plotted after each scan with 6 motion parameters:
 - Add calculated speed command speed feedback.

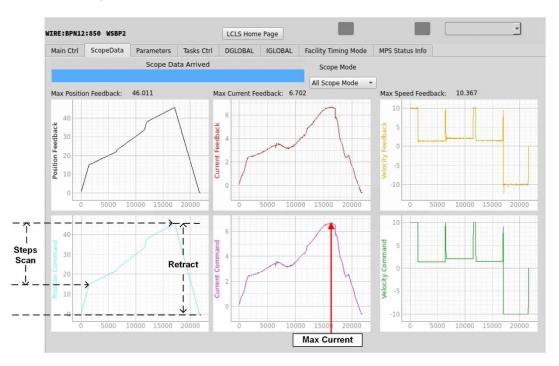


Fig.8: Scope Data Display with Step Scan

Scope Data Retrieval Time Test:

Beam Rates (Hz)	Velocity (mm/s)	Scan Time(s)	Retrieval Time(s)
10	0.175	172.1	78.7
60	1.05	72.0	29.4
120	2.1	26.5	24.0
2000	35.0	14.3	14.3
8000	140	7.9	11.0
20000	350	4.2	8.7
50000	<540	3.8	7.5

CONCLUSION:

- ➤ The new designed LCLS-II fast wire scanner scope data streaming pipeline can acquire **motor position**, **current**, and **velocity** directly from Aerotech controller in real-time without data loss;
- ➤ After data downsampling, the data retrieval times is **below 30s** under nominal operating conditions;
- ➤ This data streaming pipeline has been developed and deployed into all 20 LCLS-II fast wire scanners;
- The **future plan** is to expanding this tool into LCLS-I wire scanners.

