
X-Ray Diffraction Reveals the Consequences of Strong Deformation in Thin Liquid Crystal Smectic Films

Niyonzima, J.D. ^{1,2}, Jeridi, H. ^{1,3}, Essaoui, L. ¹, Tosarelli, C. ¹, Vlad, A. ⁴, Coati, A. ⁴, Trimaille, I. ¹, Constantin, D. ⁵, Babonneau, D. ⁶, Garreau, Y. ⁴, Croset, Kralj, S. ⁷, Kamien, R. ⁸ and Lacaze, E. ¹

¹ Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France;
² University of Rwanda, Kigali, Rwanda;
³ OMNES Education Research Center, ECE Paris, Paris;
⁴ Synchrotron SOLEIL, 91192 Gif sur Yvette Cedex, France;
⁵ Université de Strasbourg, Institut Charles Sandron, Strasbourg, France;
⁶ Institut P', Université de Poitiers, France;
⁷ Maribor University, Maribor, Slovenia;
⁸ U-Penn, Philadelphia, USA.

ABSTRACT

From a theoretical perspective, the smectic phase provides an arena to systematically study the effects of nonlinear elasticity via fluctuations [1] topological defects (where the distortions can be large) [2], and, as we will demonstrate here, even in complexions arising from antagonistic boundary conditions. By studying regions of high layer curvature via Grazing Incidence Small Angle X-ray Scattering (GISAXS) we have measured, with spatial resolution,

the layer spacing and find that it is accurately described by the nonlinear response of bent layers under antagonistic anchoring [3].

We form smectic layers bend into arrays of flattened

hemicylinders (Figure (a)). The high-resolution X-ray measurements for a film thickness 180 nm allow to determine the wave-vector value $q = 2\pi/d$ - d being the intralayer spacings - as a function of α the layer normal orientation (Figure (b)). q' for curved layers with α < 85° is smaller than q_o for central layers with α = 89° -in yellow in Figure (a)).

We minimized the non-linear elastic energy of one given hemicylinder to show that a dilation is induced in the curved layers to relieve the large bending energy. Calculated and measured average dilations perfectly agree [3]. This dilation is a direct consequence of the smectic non-linear elasticity. It may occur in all lamellar systems of small curvature radius.

REFERENCES

- 1. G. Grinstein and R.A. Pelcovits, Phys. Rev. A 26, 915 (1982).
- 2. T. Ishikawa and O.D. Lavrentovich, Phys. Rev. E 60, R5037 (1999).
- 3. J.D. Niyonzima et al., Phys. Rev. Lett. 134, 018101 (2025).