33rd European Synchrotron Light Source Workshop Synchrotron SOLEIL

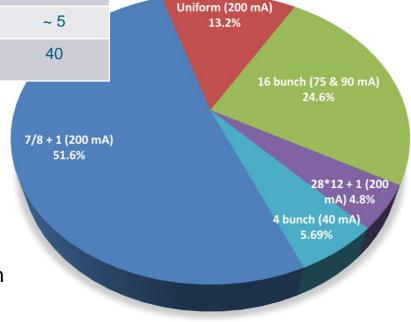
29th-31st October 2025

Accelerator operation

Jean-Luc Revol, Nicola Carmignani

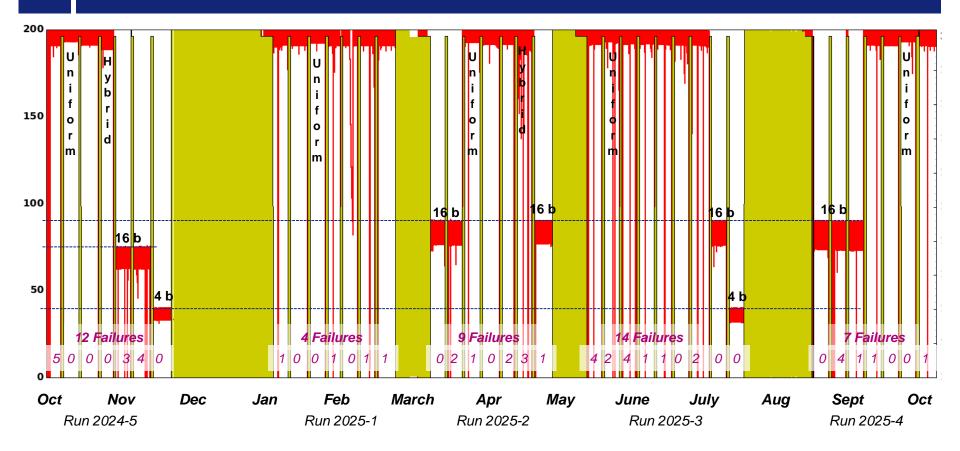
On behalf of the EBS Accelerator Team

- Statistics and failures
- Shutdown activities
- Beam parameters
- Projects and development


The European Synchrotron

BEAM DELIVERY OCTOBER 2024 → **OCTOBER 2025**

	7/8 + 1	Uniform	28*12+1 (Hybrid)	16 bunch	4 bunch
I_{max} (mA)	192+8	200	192 + 8	90	40
Lifetime (h)	> 20	~ 25	> 16	6	~ 5
ε_v (pm)	10	10	20	40	40


^{*} Vertical emittance artificially increased from 1 pm rad to get an operational lifetime

- All beam modes delivered since last MAC
- 16 Bunch achieved at nominal current (90 mA) in January 2025 (delivered at 75 mA before)

^{*} All timing modes delivered with a purity of 10⁻⁹ with cleaning process in the booster

BEAM CURRENT OCTOBER 2024 → OCTOBER 2025

- ✓ Non labelled weeks are delivered in 7/8+1
- ✓ Green is MDT day or shutdown1

STATISTICS OCTOBER 2024 → OCTOBER 2025

RUN NUMBER	2024-05	2025-01	2025-02	2025-03	2025-04	Overview
Scheduled Beam Time (H)	1056.00	1032.00	1028.00	1320.00	1029.00	5465.00
Delivered Beam Time (H)	1045.20	1027.10	1015.50	1303.00	1013.10	5403.90
Availability	98.98%	99.53%	98.78%	98.71%	98.45%	98.88%
Dead time for failures	1.02%	0.47%	1.22%	1.29%	1.55%	1.12%
Number of failures	12	4	9	14	7	46
Mean time between failures (H)	88.0	258.0	114.2	94.3	147.0	118.8
Mean duration of a failure (H)	0.90	1.23	1.39	1.21	2.27	1.33

Bad run, mostly RF failures

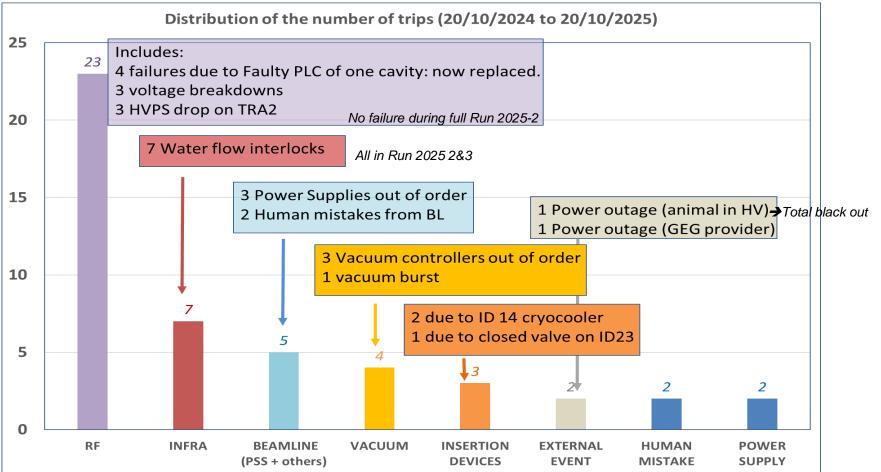
Not a single RF fault!
Beamline, flowmeters,
vacuum

Long power outage & RF failures

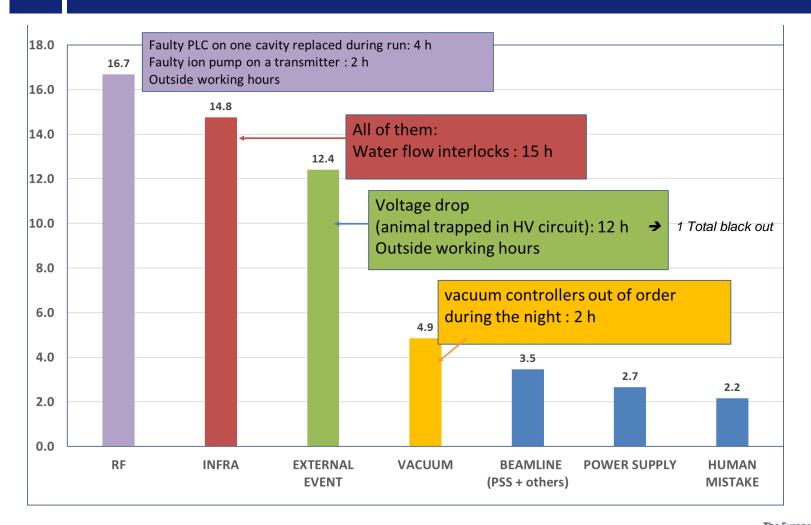
Very good despite a long failure of the injector

Bad run, mostly RF and flow meters

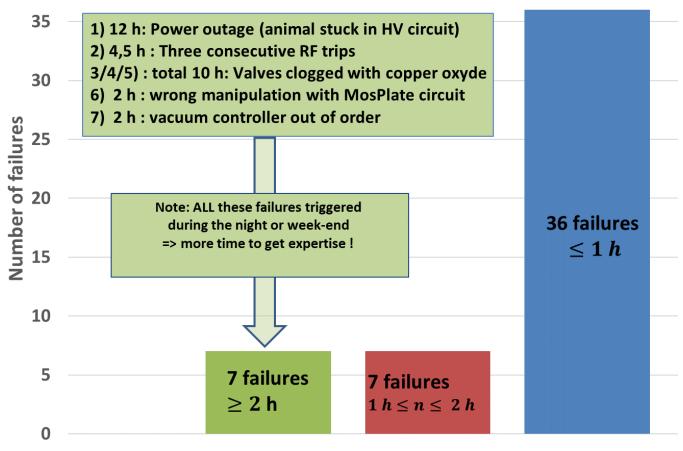
Number of topup refills	1028	1020	1004	1291	997	5340
Number of skipped topup refills	9	44	16	34)	15	118
	0.9%	4.3%	1.6%	2.6%	1.5%	2.2%

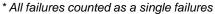


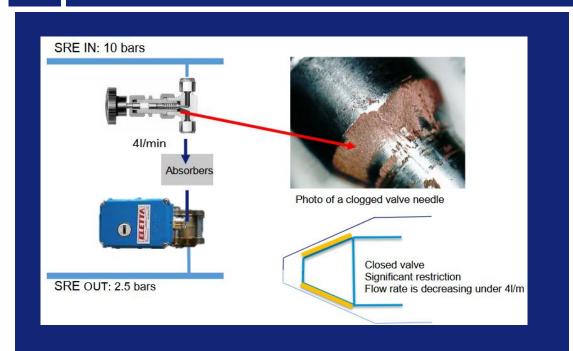
Due to injection kicker, timing and RIPS control


DISTRIBUTION OF NUMBER OF TRIPS FROM 20/10/2024 TO 20/10/2025

^{*} All failures counted as a single failure




DISTRIBUTION OF AMOUNT OF TIME LOST FROM 20/10/2024 TO 20/10/2025


DISTRIBUTION OF FAILURES VS DURATION

COOLING ISSUE DURING RUN 2055-2 AND 2025-3

Needle valves are installed on the cooling circuits of :

- The absorbers

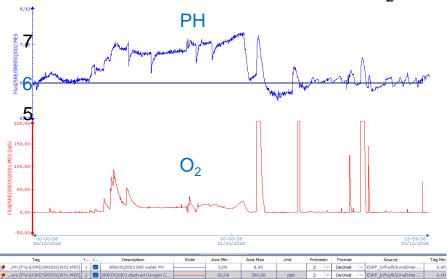
 4 valves / cell 1 valve / girder)
- The room temperature in-vacuum insertion devices water cooling

In June 2021, we suffered from 2 beam trips due to clogging of the absorbers' needle valves.

=> All of the absorbers' needle valves were fully open in order to avoid new beam trip and to take time to understand the problem and react.

In May 2023, the absorbers' needle valves in $\frac{1}{4}$ of the SR were tuned @ nominal flow rate (~ 5l/mn). In August 2023, All the absorbers' needle valves were tuned @ nominal flow rate.

→ Since then no specific cooling issues.

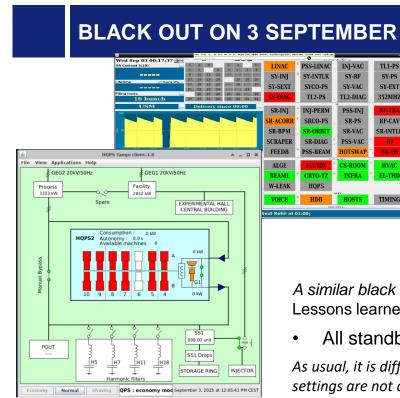


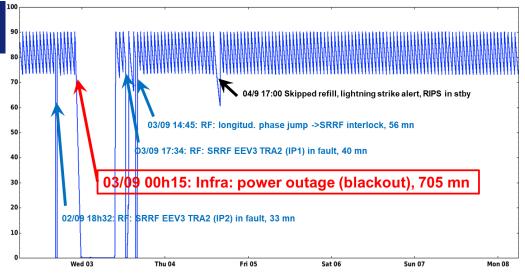
COOLING ISSUE DURING RUN 2025-2 AND 2025-3

- Monday 28/04/2025 (MDT): 11 alarms
 - → Decision to fully open All the absorbers' needle valves during MDT
- Then water flow interlock in Cell 9, cooling of the straight section.
 - → flow was set to nominal flow by opening the valve
- Then on 1 May at 17:33 beam lost on cooling cell 16

Observation of a regular decrease of the flow for a few days.

- → Intervention during MDT to check all flow in straight sections and
- → Check and correct PH and low O₂ level




Serious problem of solid copper deposit due to an abnormally high level of O₂ in the circuit (despite the 1 μm filters in each cell and 0.1 μm in PGUT)

PH carefully monitored and corrected at 6, but slow process

(Risk of erosion of cooper (dissolved copper if Low PH) instead of solid copper (High PH))

→ The situation is now stable with no flowmeter issues but requires a careful follow up during shutdowns (and sometime MDT).

A similar black out occurred last year on 1st September due to the feeding line Lessons learned:

All standbys on site to restart the equipment of the accelerators

As usual, it is difficult to restart after a complete black out. Some equipment is broken, some settings are not correct, a few pieces of equipment hidden... Need time

- Detailed restart in back-up slide
- → situation has improved but some procedures still needed concerning control restart
- CPMUs cryo-coolers this time kept cooled up after the power outage
 - → No problem this time thanks to the new dual powering system
 - Diesel engineer repaired

SY-PS

SY-EXT

RF-CAV

SR-INTLK

HVAC

EL-THD

SYCO-PS

SR-ORBI

SR-DIAG

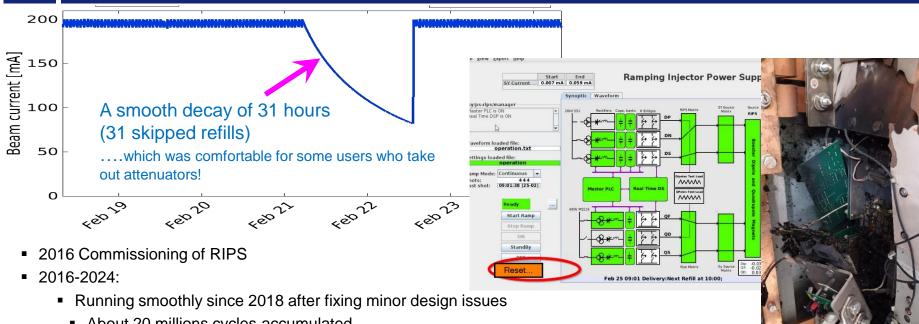
SY-VAC

PSS-INJ

SR-PS

SR-VAC

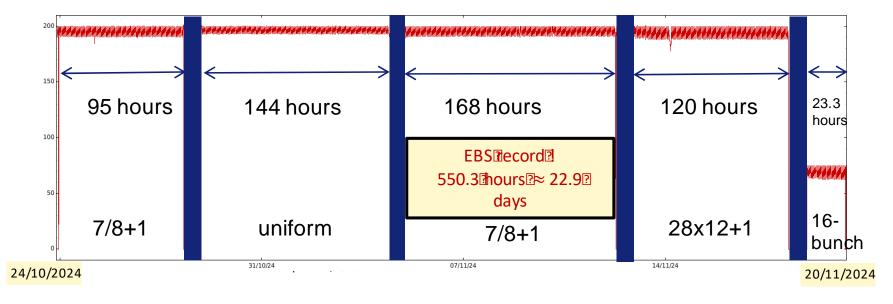
INFRA


- → But of no use due to the origin of the black out
- Single mailing list for information diffusion (address to be contacted done but single list still not done)

Short circuit in the 20 kV harmonic filters due to an animal, downstream HQPS

RUN 2025-01: FIFTH WEEK: 31 SKIPPED REFILLS

- About 20 millions cycles accumulated
- July 2024: installation of a NEW spare IGBT stack in DP H-Bridge...
 ... exploded after only 2.3 million cycles / 6 months' operation on 21/02 at 06:00
- Replaced by spare power supply after careful checks
- Procurement and repair took 5 months without operational spares


Use of RIPS was a constraint during this period to minimize the operation risk. In particular, 16 bunch mode was delivered at 40 pm.rad instead of 20 in order to gain in lifetime.

Back to operation on 15/07

EBS OPERATION RECORD

- 5372 hours of beam delivered in 2024 out of 5486 hours scheduled
- Overall availability in 2024: 97.92 %, with MTBF = 72 hrs and MDF = 1.59 hrs
- In 2025, 4358.7 hours of beam delivered in 2025 out of 4409 scheduled [in progress]
- Overall availability 2025: 98.86 % [in progress]
- ECO mode in USM operation maintained

MAIN INTERVENTIONS DURING SHUTDOWNS

Detailed list in back-up slide

Winter shutdown 2025

SRTU : refurbishment of search button cables of the PSS_

TZ04-8-HSC04 : Sext/Octu Mopslate installation <

CELL03-arc : K1 Friatec vessel against Solcera vessel

CELL28-SS: 2 room temp in vacs

March shutdown 2025

LINAC : Extension of the SRE network

CELL28-SS: phase shifter middle SS

May shutdown 2025

RIPS: Removal of the broken IGBT stack (DP H-bridge)

Cell08-SS CV2300/6mm in downstream position (prototype AL vessel)

Cell23-SS Replacement of the CV5000 (canted straight section)

Cel24-SS: New revolver upstream position + phase shifter civil work

Summer shutdown 2025

Linac: Preparatory works (civil works, cabling, cooling, wave guide network, ...)

SRRF: TRA2 klystron replacement: EEV5 -> EEV-3

CELL29-SS Removal of the cryogenic in vacuum device – IVU in the middle

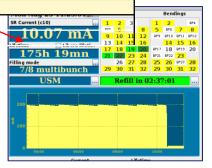
CELL13-SS: cryogenic in vacuum device installation middle position

CELL24-SS: New revolver - Downstream position

Cell08-SS Replacement of the CV2300/6 by the CV2300 coming from CELL13-SS

CELL17-CELL21: Partial re-alignment of girders

October shutdown 2025


SYTU: replacement of QF28 & QF29

CELL01-SS: room temp in vacuum device

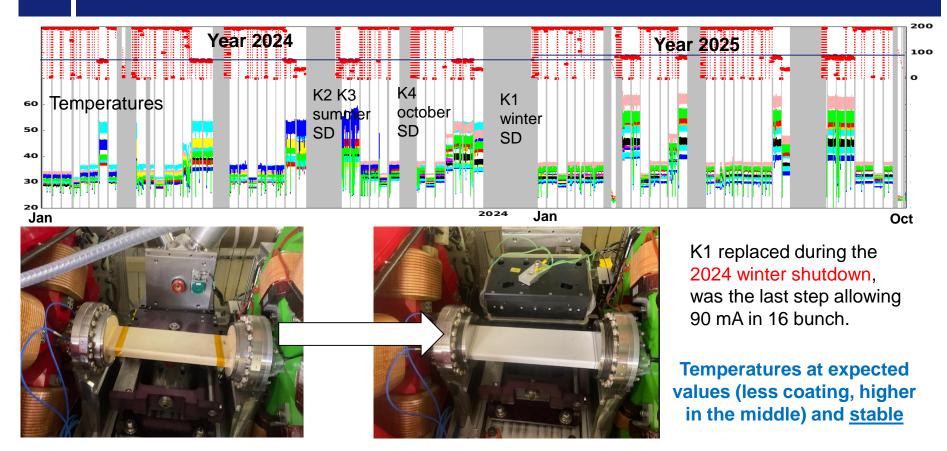
Every shutdown:

SRTU &SYTU: Flow meter maintenance

FE maintenance

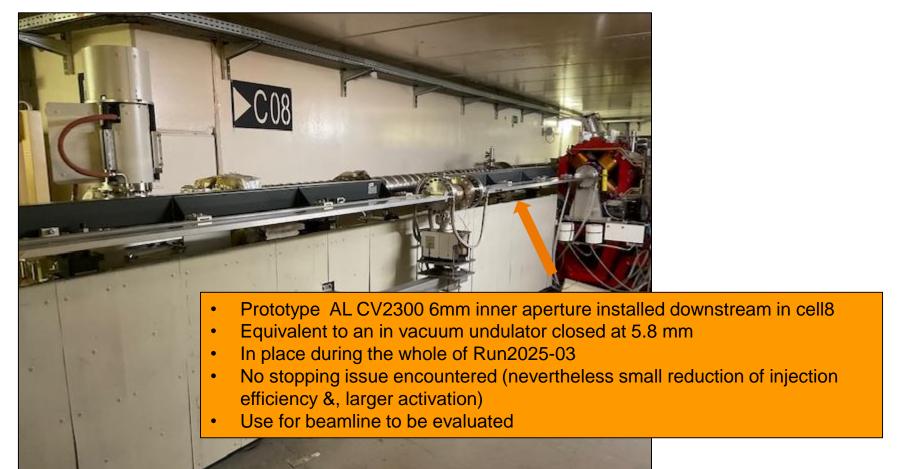
ALPS are now covered

by hot swap system



Partial realignment of Cell 17 to Cell 21 during summer shutdown (See David's talk). No specific issues at restart and for the beamlines

Benefit for the machine will only be seen when the total realignment is performed



CELL03-ARC: REPLACEMENT OF THE LAST FRIATEC CERAMIC VESSEL

All 4 Solcera chambers behave well in all beam modes and 90 mA has been reached since January 2025.

CELL08-SS: CV2300 (8 X 10MM) REPLACED BY CV2300 (6 X 8MM)

LOCATION OF THE IN-VACUUM DEVICES

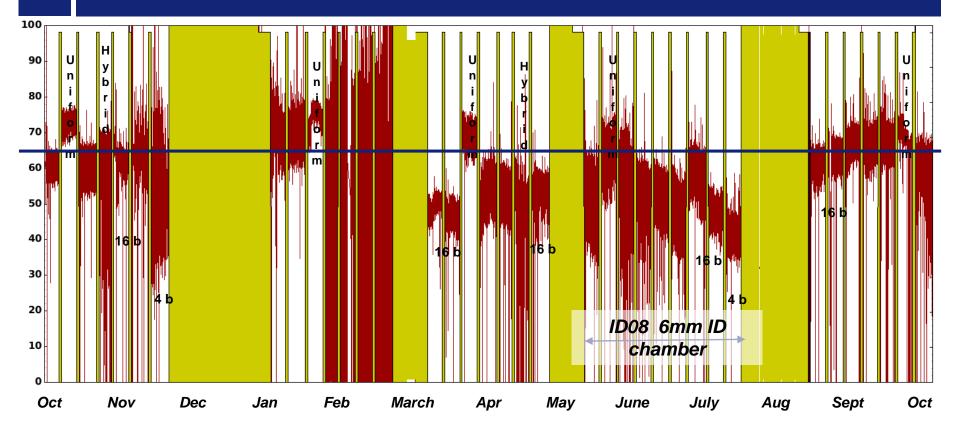

	Position				
	Upstream	Middle	Downstream		
CELL01			XXXXX uncooled		
CELL03		CPMU16.4/2			
CELL06	CPMU18/1				
CELL09	ppi23/1		ppi17/1		
CELL11	CPMU18/2		hpi22/1		
CELL13		CPMU16-4b			
CELL14	CPMU18.6/1				
CELL15	CPMU18/3		hpi20/1		
CELL16	CPMU20.5/1				
CELL22		hpi26/1			
CELL27		CPMU18/4			
CELL28	hpi22/2		hpi13.3/1 uncooled		
CELL29		ppi21/1			
CELL31		CPMU14.4/1			
Total	7	6	5		

9 Cryogenic in-vacuum

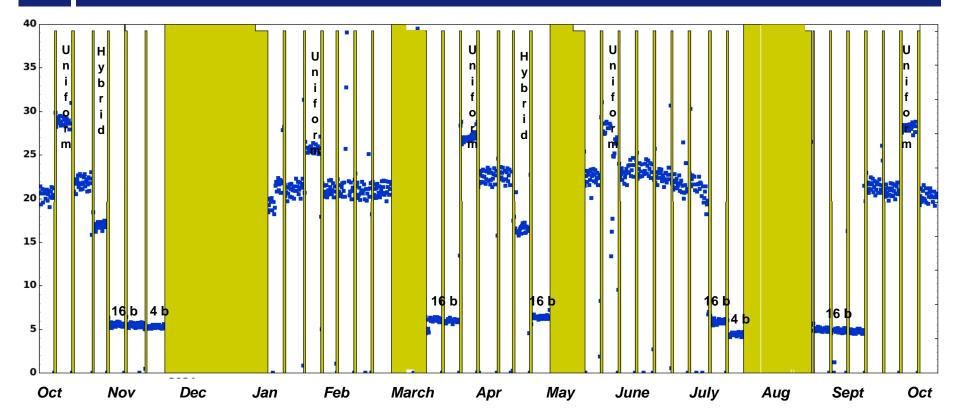
7 Room temperature in-vacuum devices (IVU) water

2 1 Room temperature in-vacuum devices uncooled

Cell13-ss: cryo-invac coming from id29 in middle position

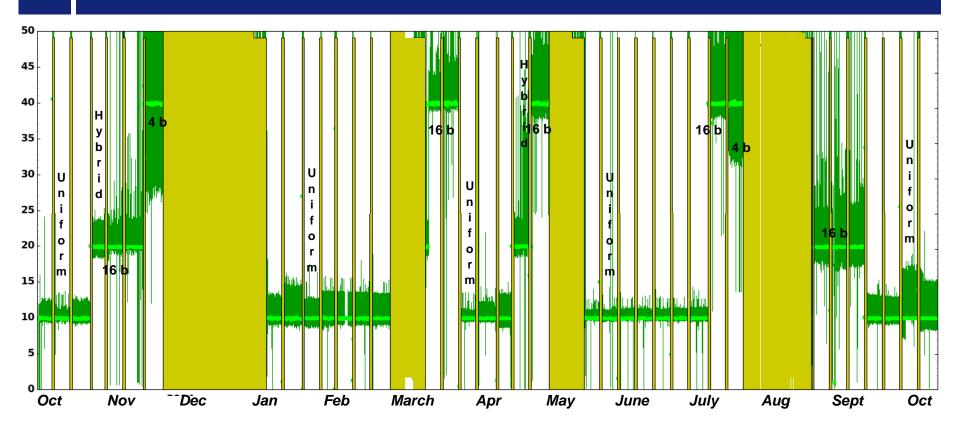

Cell29-SS: IVU shifted in

middle position

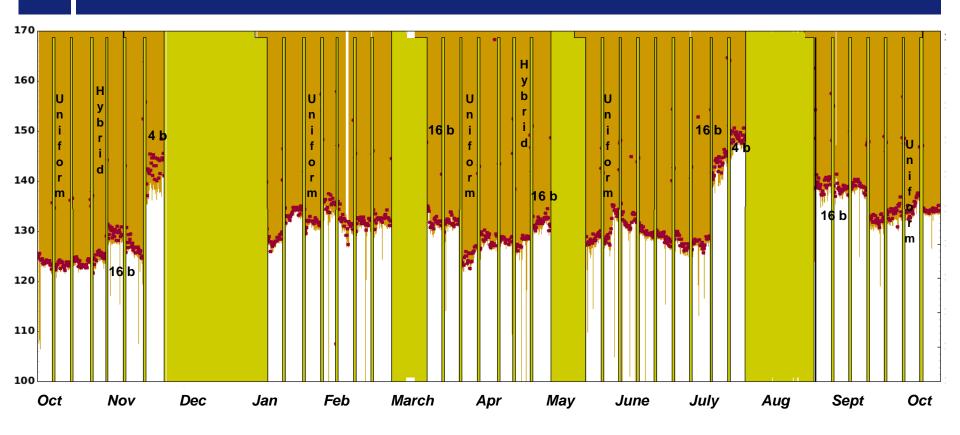


INJECTION EFFICIENCY OCTOBER 2024 → **OCTOBER 2025**

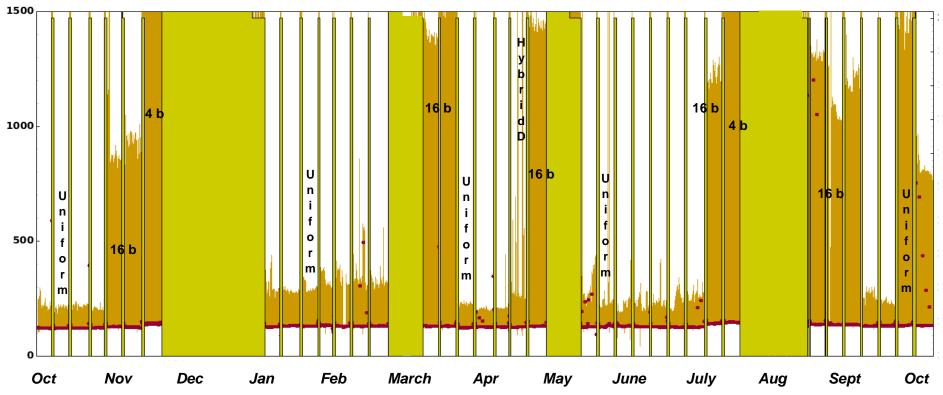
- ✓ Average during the period: 65%, upgrade of the injector is a key issue to improve injection efficiency.
- ✓ Injection efficiency re-optimized at each restart (manual +badger) and regularly by operators
- ✓ 10% reduction observed since March, but difficult to recover, not well understood, some ideas under investigation
- √ 7/8+1 affected by saturation on single bunch for a long time (linked to impedance effect, study with simulation and MDT).


LIFETIME OCTOBER 2024 → OCTOBER 2025

- ✓ Average beam mode maintained compared to previous years
- ✓ Lifetime re-optimized at each restart (manual +badger)
- ✓ Collimators retuned at each change of beam mode (set at 7% reduction gap open)
- ✓ Lifetime increased in 16 bunch run 2025-2&3 to protect RIPS


VERTICAL EMITTANCE OCTOBER 2024 → **OCTOBER 2025**

- ✓ Vertical emittance increased from 1 to 10, 20 or 4 pm.rad to maintain lifetime
- ✓ Vertical emittance increased from 20 to 40 pm in 16 bunch run 2025-2&3 to protect RIPS
- ✓ Less than 5 pm blow-up at injection in multibunch mode


HORIZONTAL EMITTANCE OCTOBER 2024 → OCTOBER 2025

- √ Horizontal emittance in average of 128 pm
- ✓ A few pm variation with ID gap variation (ID power of 100kW in average at 200 mA)

HORIZONTAL EMITTANCE (INJECTION PERTURBATION) OCT 2024 → OCT 2025

- Less than 200 pm blow-up at injection in multi-bunch mode when the compensation system and the optics (tune) are well tuned (the most sensitive beamlines do not take data during refill)
- Compensation system not working in 16 and 4 bunch mode
- No complaints from users even when the system is not perfectly tuned (like the large perturbation in the uniform of last run, most probably due to compensation system not well tuned to the injection settings)

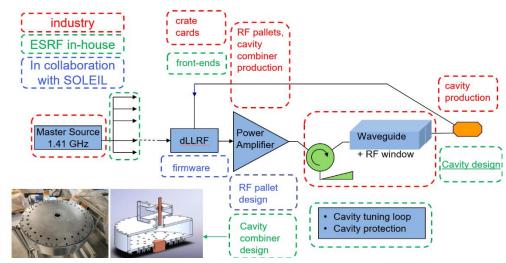
MEDIUM TERM SCIENTIFIC PROGRAMS

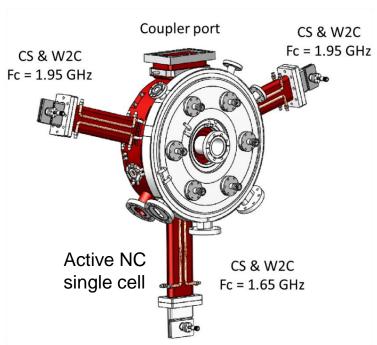
Accelerator programs in next 5 years

1. High reliability, availability, stability and sustainability of USM operation

- SSAs for RF system @ storage ring consolidate the storage ring operation
- ID constructions, ID controls provide more light sources, better control, and explore the potential of EBS
- Energy saving (ECO mode) maintained in USM operation
- Injector upgrade (linac refurbishment & booster light upgrade)

2. Improvement of beam delivery and performance

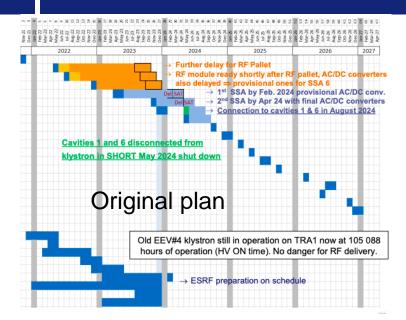

- Injection improvement injection efficiency promotion, transparent injection
- 4th harmonic cavity improve the beam performance @ timing modes –
 Higher brightness & coherence, future upgrade
- Low-gap IDs, other new type IDs (HTS) under investigation
- New linac (COLD) Increased linac energy, test facility for new technology of linac structure



4TH HARMONIC CAVITY

The ESRF is providing the complete cavity design to SOLEIL II within a collaboration contract

Close design project relaunched in 2025 for ESRF



Courtesy P Boroviec

MEDIUM TERM STRATEGY PROGRAMS – RF PROJECTS (SSA)

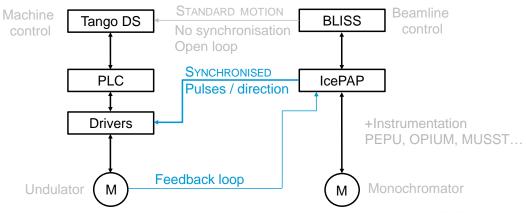
SSAO, a prototype of technical verification at JEMA

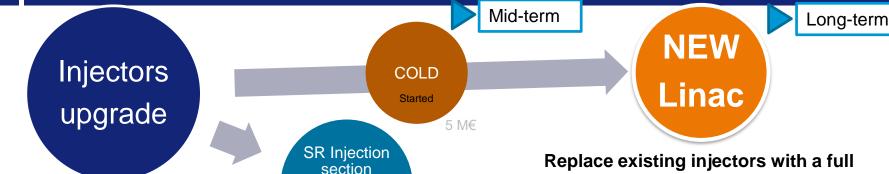
SSAO, test at the ESRF

Solid State Amplifiers situation

- An amendment was signed in April 2024, to have an SSAO to be the technical validation for JEMA
- SSAO delivered in on 18th Oct, 2024, but SAT not yet fulfilled due to a series technical issues. The scheduled 1000 hrs test even not yet started.
- SSA2, as the milestone 2, scheduled to finished in June 2025, tests failed until 20th Oct.
- The contract to JEMA France most probably to be terminated, due to these uncompleted milestones.

MEDIUM TERM STRATEGY PROGRAMS – ID


ID construction


Simplified diagram

ID synchrotronization

Courtesy G LeBec

INJECTOR UPGRADE PROGRAMME

Linac refurbishment **Procurement**

More reliability Modernization

Booster refurbishment

Advanced Design & procurement

Lower natural emittance Higher injection efficiency in SR Higher extraction efficiency

0.5 M€

improvem<u>ent</u>

In construction

Non-linear injector kicker Transparent injections Maintain injection efficiency

3 M€

Central building BM30 A+B Laborato Control room BM01 A+B

Replace existing injectors with a full energy injector linac

Higher injection efficiency, lower injection perturbation, enable/facilitate future SR

upgrades

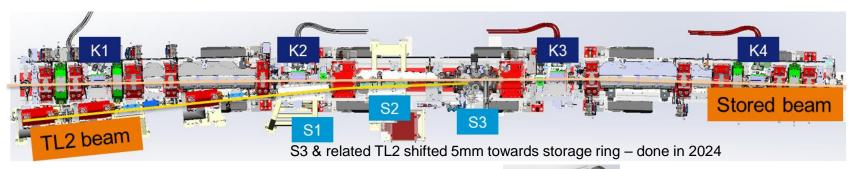
6GeV + margin

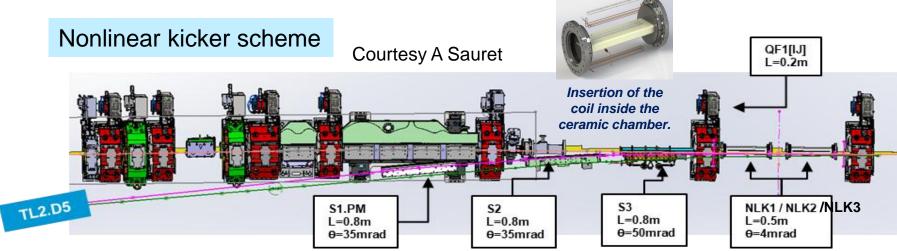
- > 600 pC (single bunch)
- < 1 nm.rad at SR injection
 - < 0.1 % energy spread
 - < 1 mm bunch length
 - > 4 Hz repetition rate

Bunch spacing 2.8ns (in the SR)

Fits on site (maximum 180m)

As low energy consumption as possible User facility grade:


- Reliability
- Reproducibility Maintainability



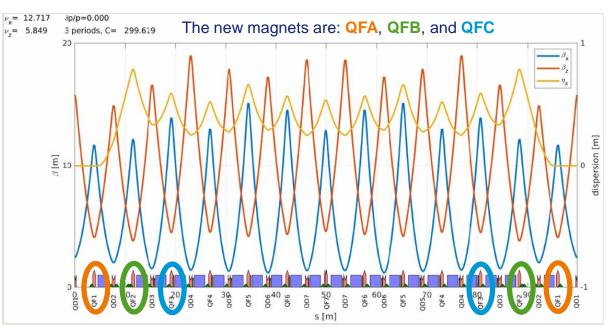
1.5 M€

MEDIUM-TERM SCIENTIFIC PROGRAMS – INJECTION IMPROVEMENT

- Assembly end 2025 of the NLK, same procedure as SOLEIL
- Installation in May 2026 in the ID8 test section for test and validation
- Installation in 2029 in the injection section of 3 NLK for a total angle of 12.2 mrad.

BOOSTER LIGHT UPGRADE

Basic idea: increase the number of quadrupole families from 2 to more (4, 5 or 6) to reduce horizontal emittance.


The 3 additional QF families will be powered by the same booster power supply (RIPS), but the 18 magnets will be shorter in order to have a smaller gradient.

Present lattice 2 quad families

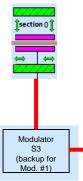
- 39 QD, 39 QF
- $\varepsilon_{\rm x} = 83.1 \, {\rm nm}$
- BL = 22.6 mm

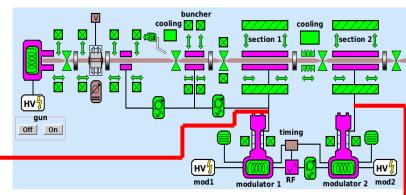
New lattice 5 quad families

- 39 QD, 21 QF,
- 6 QFA, 6 QFB, 6 QFC
- $\varepsilon_{\rm x} = 59.6 \, {\rm nm}$
- BL = 19.9 mm

The installation in the booster should be during the winter shutdown 2027/2028.

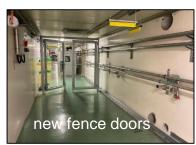
LINAC - REFURBISMENT


Implemented actions:


- Modulator #3 moved to a new position to provide the RF for:
 - Section #1 in the Linac
 - Spare accelerating section during conditioning
- Spare accelerating section -> CFT awarded by RI GmbH
 - All cavities have been machined
 - Brazing and tuning in November
 - Delayed delivery due to lead time of ceramic for the RF window (input splitter) December 2025
- Solid state RF Unit -> CFT awarded by ScandiNova
 - Canon klystron has been selected
 - FAT accepted.
 - SAT in November
- Purchase of vacuum chamber to replace any section -> delivered

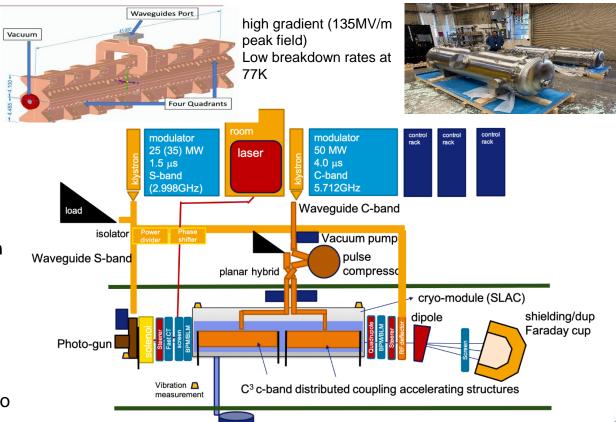
Linac, beam dynamic simulations by BD Group.

Existing Linac is modelized



Courtesy P Boroviec

COLD PROJECT

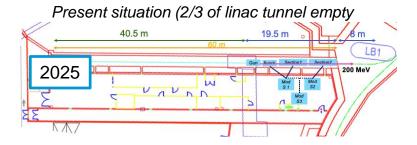

C2 cold copper

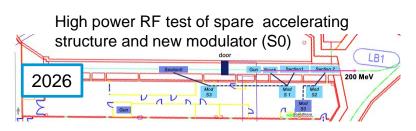
Operation
Linac
Demonstrator

A demonstrator to prove high gradient cryogenic accelerating structures (about 80 MeV/m energy gain) for users facility grade operation at low repetition rate.

The **pre-injector** of a new 6GeV linac.

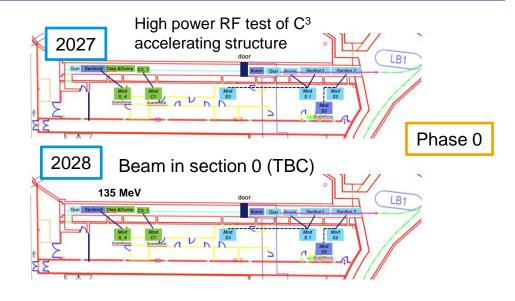
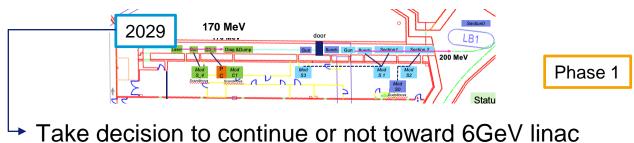
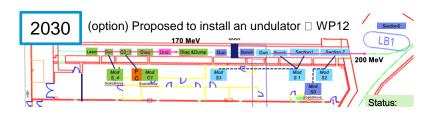
SLAC distributed coupling standing wave cryogenic accelerating strucutres and cryomodule

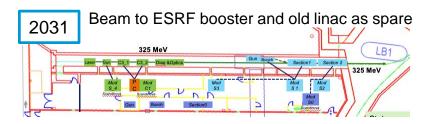


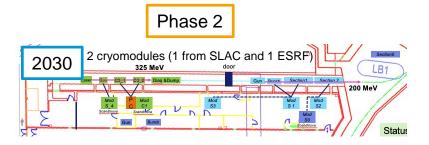

 LN_2

Courtesy S Liuzzo

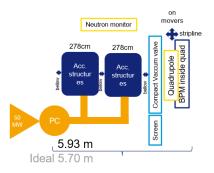
INSTALLATION IN THE TUNNEL


Photo Gun available in 2028 Beam in C³ acc. structures.



INSTALLATION IN THE TUNNEL



2032-35(?)

6GeV Linac construction during shutdowns and commissioning during USM

Fits on ESRF site

6.159 GeV in 131m, 21 x 5.93m modules

80+4 accelerating C3 structures

5.6mm.mrad, ~500pmrad@6GeV

0.18% energy spread

0.5mm bunch length

2035 (?)

2 month shutdown to install new Transfer line linac to SR and commission new injection

OVERVIEW OF EBS OPERATION AND CONCLUSION

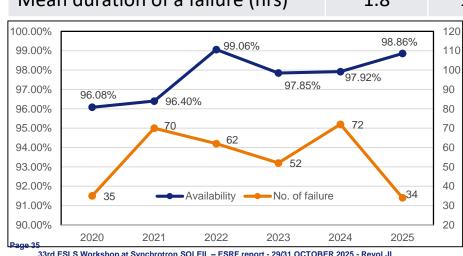
	Units	ESRF	ESRF- EBS
Energy	GeV	6	6
Circumference	m	844.4	844
Lattice		DBA	HMBA
Current	mA	200	200
Lifetime	h	50	25
Emittance H	pm.rad	4000	133
Emittance V	pm.rad	4	1 to 40

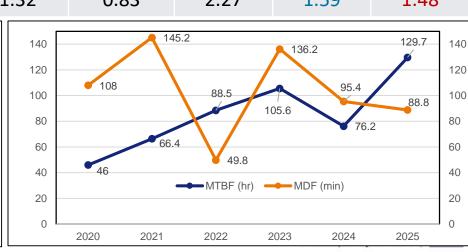
	2018	2024	2025*
Availability (%)	98.47	97.92	98.86
Number of failures	53	72	34
Mean Time Between Failures (hrs)	104.30	76.2	129.7
Mean Duration per Failure (hrs)	1.60	1.6	1.5

^{*} statistics until 14th October for 2025

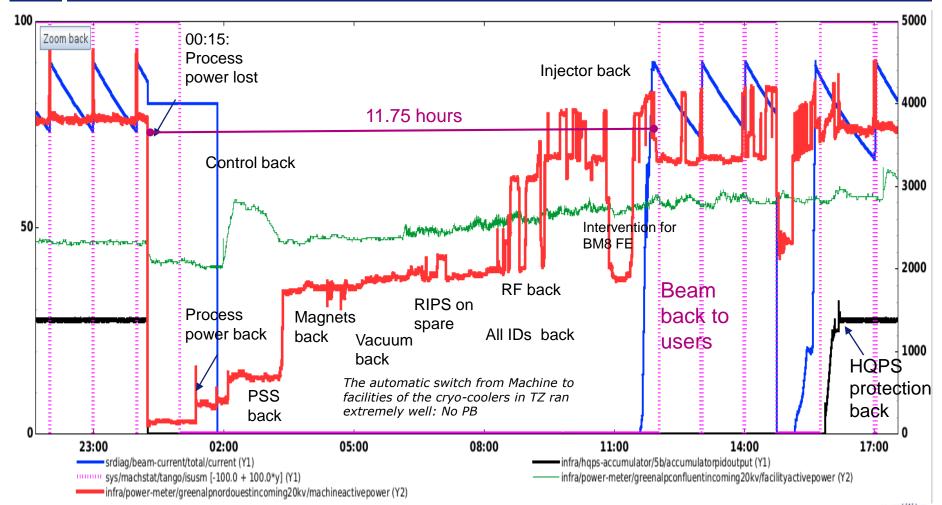
Failures affecting a single beamline are not counted

- ✓ EBS fully operational at nominal parameters.
 - → 90 mA current routinely delivered in 16 bunch
- ✓ Reliability, <u>reproducibility</u> and tuning of the machine are very good.
 - → However injection efficiency is an issue
- ✓ Injection perturbation (imposing 1h topping up) is still an issue despite the efforts to reduce it
 - → New injection scheme is in development
- ✓ Statistics are better for 2025 with fewer failures and very few long beam interruptions.
 - → securing the SR RF system is mandatory (SSA)
- ✓ Maintaining and improving lifetime
 - → 4th harmonic cavity project restarted
- ✓ Upgrade of the injector
 - → Linac upgrade programme is ongoing


Two failures occurring in less than 1 hour counted as a single long failure


MANY THANKS FOR YOUR ATTENTION

EBS 5-YEAR OPERATION SINCE 25/08/2020


	2020 (4 months)	2021	2022	2023	2024	2025 (4 runs)
Scheduled beam time (hrs)	1609	3616	5490	5492	5486	4409
Delivered beam time (hrs)	1545.90	3547.27	5438	5374	5372	4358.7
Availability	96.1%	96.35%	99.06%	97.85%	97.92%	98.86%
Number of failures	35	70	62	52	72	34
Mean time between failures (hrs)	46.0	66.4	88.5	105.6	76.2	129.7
Mean duration of a failure (hrs)	1.8	1.32	0.83	2.27	1.59	1.48

33rd ESLS Workshop at Synchrotron SOLEIL - ESRF report - 29/31 OCTOBER 2025 - Revol JL

OVERVIEW OF THE RESTART AFTER BLACK OUT

MAIN INTERVENTIONS DURING SHUTDOWNS

New installations	Preventive maintenance
Winter shutdown 2025	
Booster-sector1: 20 buttons vacuum vessel installation	SY-RF / SR-RF : Greasing and check of tuners
TL2-correctors : New power supplies	SRTU : refurbishment of search button cables
TZ04-8-HSC04 : Sext/Octu Mopslate installation	CELL04-G0 : Refurbishment of S2 cooling system
CELL03-arc : K1 Friatec vessel against Solcera vessel	TL1-QD3 : brazing of a leaky water copper box
CELL06-BPM7 : Clamp installed	CELL06-SS: Re-installation of cryogenic invacuum device
CELL14-SS: Phase shifter installation	CELL30-SS: New carriage on upstream mechanic (taper)
CELL28-SS: 2 room temp invac devices* + phase shifter support	FE maintenance
March shutdown 2025	
LINAC : Extension of the SRE network	SRTU &SYTU: Flow meter maintenance
CELL15-BM15 : New CV990 Al NEG coated	TL2-G0 : vertical re-alignment mainly S2
CELL28-SS : phase shifter installation middle SS	CELL14-ch7: Replacement of the ch07 RF finger
CELL32-BPM4 : clamp installation	FE maintenance
May shutdown 2025	
RIPS: Removal of the broken IGBT stack (DP H-bridge)	SRTU &SYTU: Flow meter maintenance
Cell08-SS CV2300/6mm installation in downstream position (prototype AL vessel)	Cell30-FE-ID30: Motorization stage replacement
Cell23-SS Replacement of the CV5000 (canted straight section)	FE maintenance
Cel24-SS: New revolver upstream position + phase shifter civil work	
Summer shutdown 2025	
Linac: Preparatory works for new section (civil works, cabling, cooling, wave guide network,)	SRTU &SYTU: Flow meter maintenance
SRRF : TRA2 klystron replacement : EEV5 → EEV-3	CELL17-CELL21: Partial re-alignment of girders
CELL29-SS Removal of the cryogenic invacuum device – IVU in the middle	ID03& ID13 : Slits upgrade/motorization stages & fast shutter replacement
CELL13-SS: Cryogenic trench & cryogenic invacuum device installation middle position	TZ14 : cryo-cooler replacement
CELL24-SS: New revolver - Downstream position	False floor repair in TZ
Cell08-SS Replacement of the CV2300/6 by the CV2300 coming from CELL13-SS	FE maintenance
October shutdown 2025	
SYTU : replacement of QF28 & QF29	MTBN / MTBS / PINJ concrete doors check
CELL01-SS: room temp invacuum device installation	TZ14 : cryo-cooler intervention
	CELL15-arc : AL ch07 : New RF finger
	Roof C5-7RF: Installation of grids on the air cooling circuits of the couplers
	FE maintenance

NO BEAM IS A PROBLEM BUT WHAT CONCERN OTHER BEAM PARAMETERS?

	Consequences	Report/complain to operation	Comment
Failures	No beam	Yes	
Skipped refill	20 mn or more delay of injection	No	
Injection perturbation	Position & emittance increase	No	But the most sensitive cannot work in any case
Longer refill		No	Due to lower injEff & beam mode
Lifetime drop/reduction	Faster decay	No	
Purity	> 10 ⁻⁹	Yes	ID14
Larger V emittance	Stabilized from 1 to 10&20&40 pm.rad	No	Could be reduced (7 pm.rad at least in multi)
H emittance stability	20 pm. variation beam mode& gap closure	N0	
Beam position		Yes	Small bump from CTRM when BL needed
Beam stability/fast motion		Some	Mostly ID24
Filling pattern flatness		No	Could be reduced
Bunch length	Factor 4 with beam mode	No	Depending optics, current/bunch RF voltage
Energy spread	Factor 2 with beam mode	No	Depending optics, current/bunch

MASTER PLANNING AND SHUTDOWN SCHEDULE (SUMMARY)

Del.	Date	Instrument added to the installation	Beam achievements	project
Del. 1	2025-October SD	ModS3 RF-unit displacement		Linac refurbishment
Del. 1	2025-October SD	ModS0 RF-unit (SAT)		Linac refurbishment
Del. 1	2025-December SD	6m section (RF Cond)		Linac refurbishment
Del. 2	2025-2026	Thermo-ionic gun assembly in test-stand		Linac refurbishment
Del. 4	2026-December SD	ModS4- RF-unit (SAT)		COLD
Del. 2	2026-December SD	Thermoionic gun in tunnel		Linac refurbishment
Del. 2	2026-DecemberSD	Diag and beam dump in tunnel		Linac refurbishment
Del. 2	2027-April		135MeV Beam	Linac refurbishment
Del. 3	2027-May SD	First C-band RF-unit		COLD
Del. 3	2027-Aout SD	First C-band acc. Struct.		COLD
Del. 4	2028-May SD	S-band photo-gun + laser	7MeV photogun beam	COLD
Del. 4	2028-May SD	Diag and beam dump upgrade		COLD
Del. 4	2029-January		170MeV beam	COLD
Del. 5	2029-August SD	Undulator + 170MeV beam	Xray beam	COLD
Del. 6	2029-December SD	Second C-band RF-unit and acc.struct		COLD phase 2
Del. 6	2030-September		325MeV beam	COLD phase 2
Del. 7	2031-August SD	TL1upgrade and inject in booster	325MeV beam to booster	COLD phase 2