
Michaela Schaumann

on behalf of the PETRA III Operations Team

PETRA III Operations Team: J. Keil, G. Sahoo, M. Schaumann, R. Wanzenberg PETRA IV Project Team: R. Bartolini, H. Reichert et al.

Parameter	PETRA III				
Energy / GeV	6				
Circumference /m	2304				
Emittance (horz. / vert.) /nm	1.3 / 0.013				
Number of bunches	40 or 480				
Total current / mA	100 or 120				

More than 50 experiments covering

most relevant methods

Content

PETRA III Operation in 2025

Plans for the Long Shutdown from Sept. 2026

Status of the PETRA IV Project

4656 user hours are scheduled for 2025

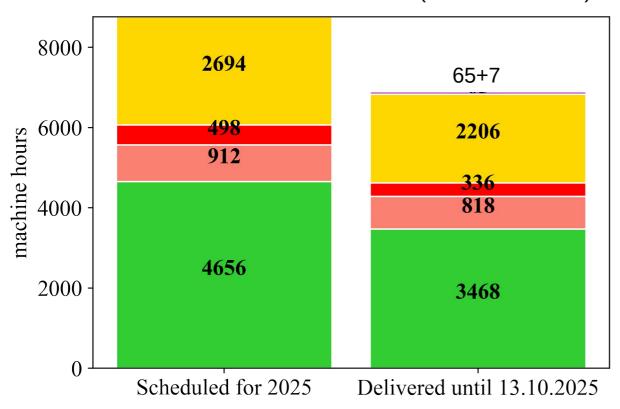
Two-week "operable" period in December to support energy management at DESY

	January	February	March	April	May	June		July	August	September	October	November	December	
H	1 8 2025	H NS 2025	H NS 2025	H NS 2025	18 2025	II NS 2025		II 18 2025	H NS 2025	H N S 2025	H N S 2025	H NS 2025	H NS 2025	
1	New Yea	r A	tr	40 Hercules	multi aborDay	β multi	1	multi	A	40	multi	tr	40	1
2	Α	Α	tr	40 Hercules	multi β	multi	2	Α	A	40	multi	tr	40	2
3	Α	IMV	tr	40 Hercules	multi β	multi	3	multi	Α		multi Reunif da	ay tr	Α	3
4	Α	IMV, NG	40	40 Hercules	multi β	A	4	multi	A	40	multi	40	multi	4
5	Α	NG	40	40	multi β	A	5	multi	A	40	multi	40	multi	5
6	A Wiggler	IM	40	40	multi β	A	6	multi	A	40	multi	40	multi	6
7	A	IM	40	40	A β Tours I		7	multi	A	40	multi	40	multi	7
8	A		40	40	multi β	Pentecos	8	multi	A	40	Α β	40	multi	8
9	A		40		multi β	Pentecos	9		A	40	multi β	40	multi	9
10	A	NG IEV Mv	L 40	40	multi β	IB tr	10	multi	A	A	multi β	40	multi	10
11	A	NG IE Mvl	40	40	multi β	tr	11	multi	IB	40	multi β	40	multi	11
12	A	NG IE Mvl	Α	40	multi β	multi	12	multi	IB	40	multi β			12
13	A Wiggler	NG IE Mvl	40	40	multi β	multi	13	multi	PETRA IV	40	multi β	40	operable	13
14	A	NG	40	A	β	multi	14	multi	Studies	40	multi β	40	operable	14
15	A		40	A	multi β	multi	15	multi		40	β	40	operable	15
16	A		40	A	multi β	multi	16	multi		40	multi β	40	operable	16
17	A	IE PXN	40	A	multi β	multi	17	multi		40	multi β	40	operable	17
18	A	IE PXE	40	Good Fr	multi β	multi	18	multi	IB AU-UH	H 40	multi β	40	operable	18
19	Α	IB			multi β	multi	19	multi	IB AU-UH	IH 40	multi β	Α	operable	19
20	A IEV	B, IL Reserv	/ <mark>e</mark> 40	Easter Su	multi β	multi	20	multi	IB TR AU-U	IHH 40	multi β	40	operable	20
21	A IEV	IB	40	Easter Me	A	multi	21	A	tr AU-UHH	40	multi β	40	operable	21
22	A		40	IB tr β	multi	multi	22	A	tr AU-UHH	A	multi β	40	operable	22
23	A		40	tr β	multi	PETRA IV	23	A	tr	A	TODAY	40		23
24	A	IB	40	multi β	multi	Studies	24	A	tr	A	multi ß	40		24
25	A	IB	40	multi β	multi		25	A	40	IB works o	u <mark>t multi β</mark>	40	Xmax	25
26	A	IB	A	multi β	multi	multi	26	A	40	IB tr	multi β		Xmas	26
27	A Wiggler	IB	40	multi β		multi	27	A	40	tr	A ev P02.:	1 40		27
28	A	IB tr	40	multi β	multi	multi	28	A	40	tr	A undulate	or 40		28
29	A IEV		40	multi β	multi Ascension	multi	29	A	40	multi	A	40		29
30	A		40	multi β	multi	multi	30	A	40	multi	IB tr	40		30
31	A		40 Hercule	es l	multi		31	A	40		tr Reforma	t.	Booom	31

Test Run

Studies / Machine Development

DESY. | ESLS'25 | PETRA III Operations | Michaela Schaumann, 30.10.2025


Shutdown

User Run

Already delivered 75% of user time scheduled for 2025 with 98.2% availability

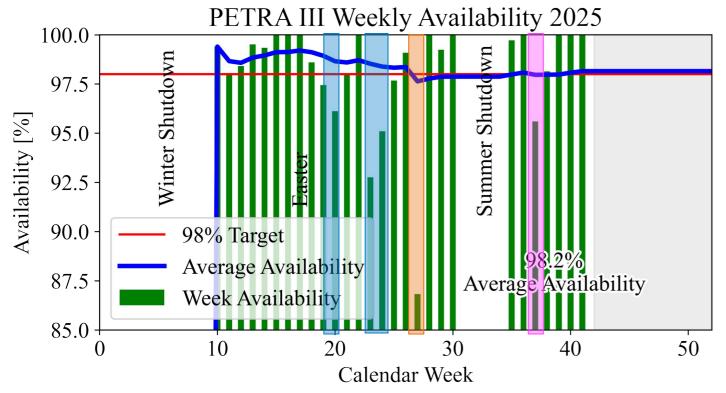
MTBF of ~65h thanks to low general fault rate – in total 54 faults during user run

Machine Time Distribution in 2025 (as of 13.10.2025)

Fault in Test Run (7h)
Fault in User Run (65h)

Shutdown/ Maintenance

Machine Development


Test Run

User Run

	Done	Target
Availability	98.2%	98%
MTBF	65 h	60 h
MTTR	1.2 h	-

Stable availability around 98%

Major source of faults in 2025 were issues around the cooling water infrastructure

KW20/23/24

→ 3 punctured water hoses of the same type

KW27

→ defect water filter polluted cooling water system around the whole ring

KW37

→ radiation damaged temperature sensor caused frequent beam dumps

Series of broken water hoses – faster ageing due to higher water temperature

Water hoses on a particular position at all sextupoles in the copper-water circuit have been exchanged

Always same piece of hose connecting the sextupole coils to the Cu-water circuit.

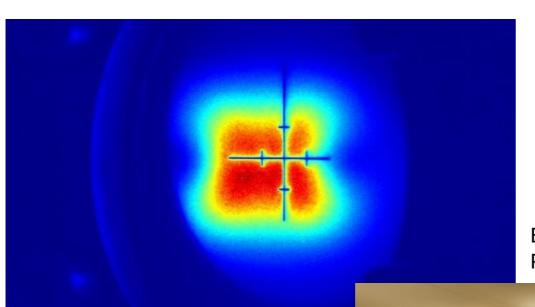
- 3x water leaks during user run
- All hoses of this position exchanged during summer shutdown
- → Most found to have the same symptoms
- Sextupoles of SCu type are operated at higher current
- → higher water temperature
- → higher stress on material
- Samples of other locations on "hose tree" of SCu and SAI show good condition.

Inside covered by copper rust, point-like holes and cracked defects

Broken water filter distributed resin particles over the full copper-water circuit

529 dirt traps had to be cleaned before machine operation could continue

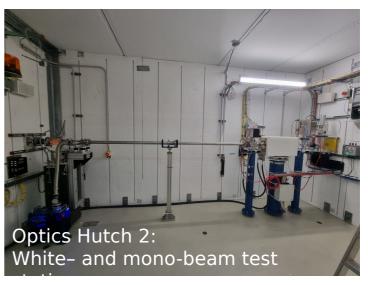
Cleaning of all dirt traps in the tunnel and the power supplies that are connected to the Cu water circuit.


Filter exchanged.
Root cause analysis showed that mesh keeping the particles inside the filter had detached.

Triggered further discussions on dirt trap concept for PETRA IV

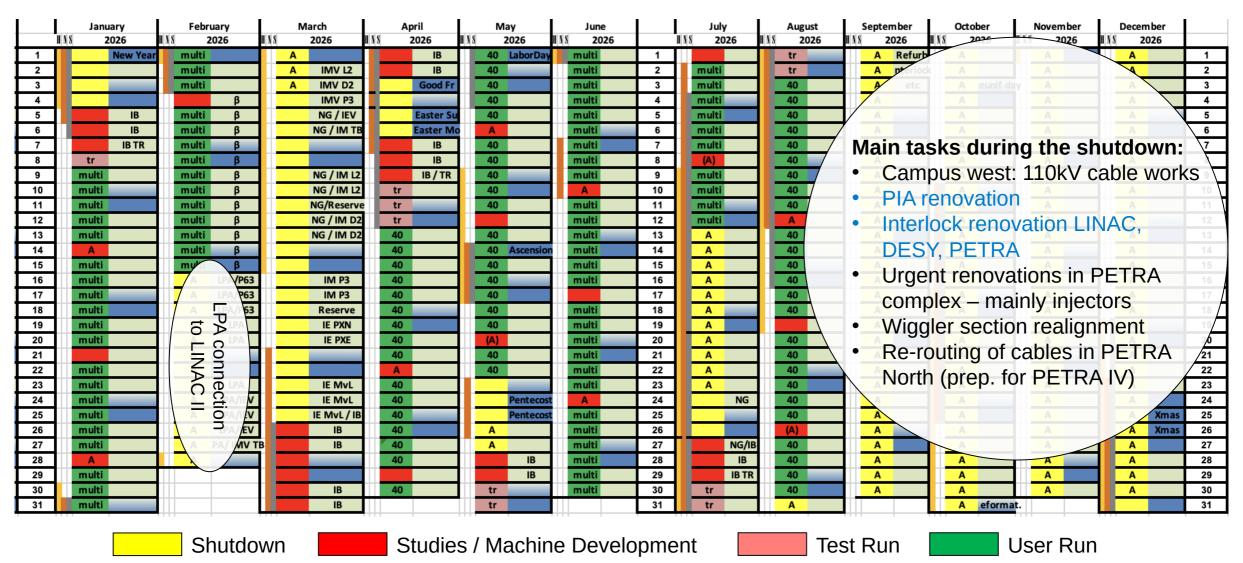
First light from PU25 undulator

The commissioning of the PU25 Undulator is finished – Beamline P25 is getting ready for first light



Partnership of industry and DESY Innovation and Technology Transfer (ITT) & Photon Science

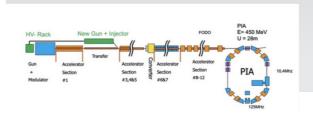
Beamline for Applied Bio-Medical Imaging, Powder Diffraction and Innovation

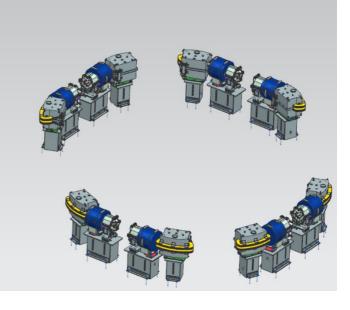


Approved schedule for 2026 with long shutdown and 3144 h user run

Many external boundary conditions influenced the scheduling

PIA refurbishment in long shutdown from Sept. 2026


Project long due, but delayed due to delivery issues



Core items to be renewed

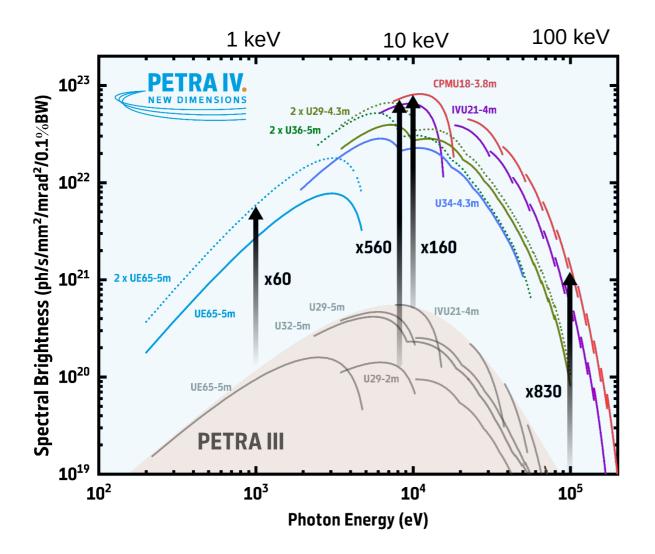
- New sextupoles and quadrupoles
- Dipoles will be equipped with new coils
- New BPM electronics
- New vacuum chambers
- General refurbishment of the hall

Refurbishment of the interlock system from Sept. 2026

Ensure continued safe operation of the PETRA III complex in compliance with current standards

Key safety components reach end of 20-year mission time in 2027

- → Demand to continue operation of PETRA III and the pre-accelerators until 2029
- → The personnel safety systems (PSS) at LINAC II, DESY II and RF safety interlock at PETRA III will undergo a comprehensive refurbishment.


Safety Interlock System

Ensuring fast switching off of the hazard source (electron beam, RF) in emergency situations.

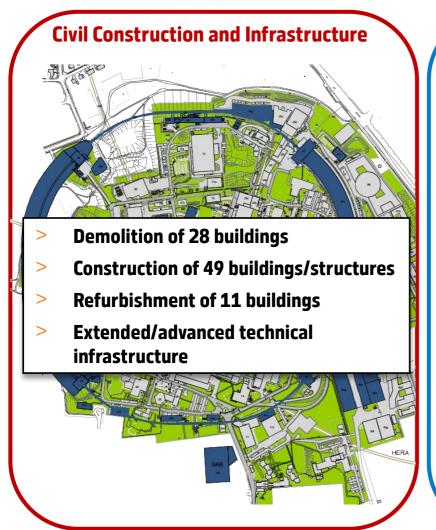
High-energy x-rays will be up to 800x brighter than at PETRA III

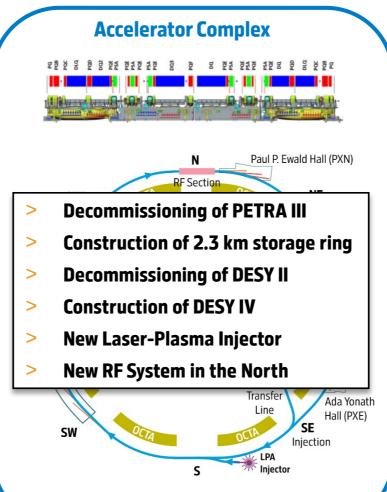
PETRA IV will run with round beams in full coupling operation

Photon source size - ideal imaging capabilities

Standard operation: full coupling

12	X	12	(pm·rad) ²	emittance
5	X	5	μ m ²	source size
2.4	1 x	2.4	4 μ rad ²	source divergence

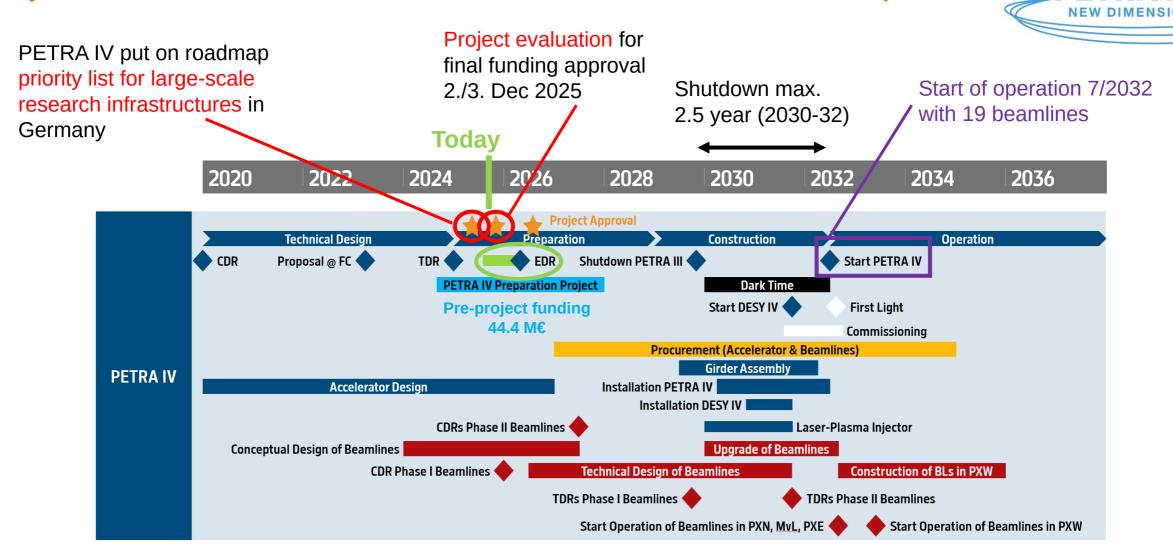

PETRA IV brightness mode


1900 bunches, 4 ns spacing, 200 mA (1 nC per bunch)

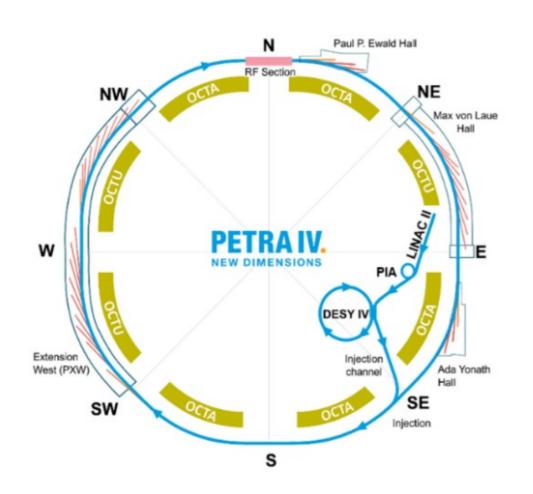
PETRA IV brightness at 100 keV higher than for 10 keV at PETRA III today!!

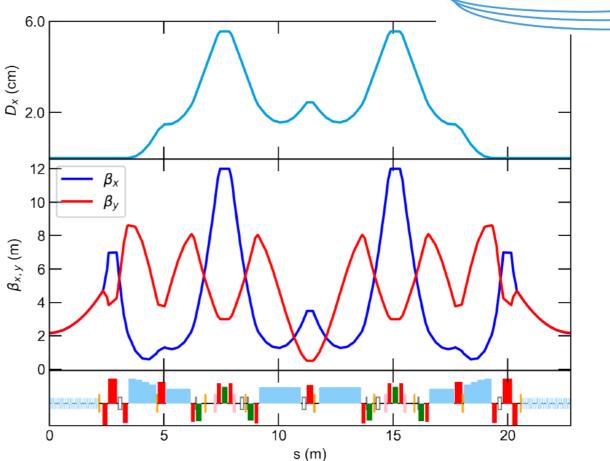
A new accelerator complex in an extended & refurbished infrastructure

Project pillars are the civil construction, accelerator complex and experimental facilities



Project timeline fixed by (external) boundary conditions

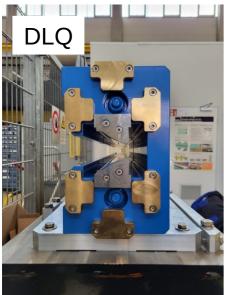

July 2025: PETRA IV was classified as "Research Infrastructure of National Importance"

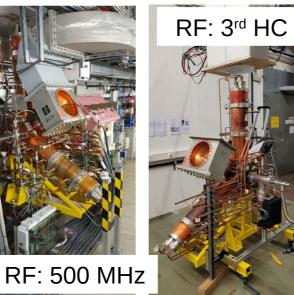


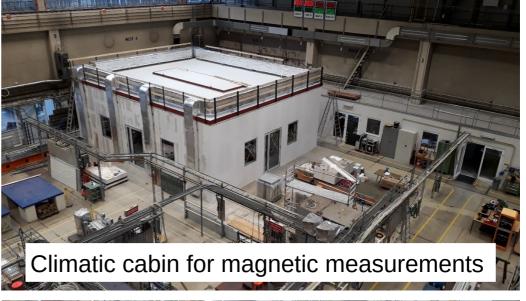
Fully symmetric 8-fold H6BA cell structure with 72 cells over 2.3km

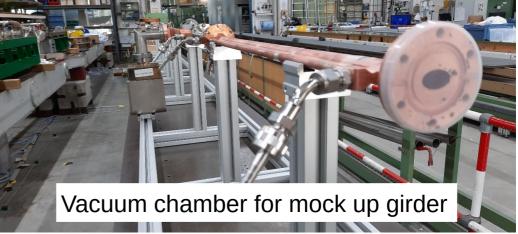
Dynamic aperture sufficient for off axis injection (~8mm with errors - 6mm at injection point)

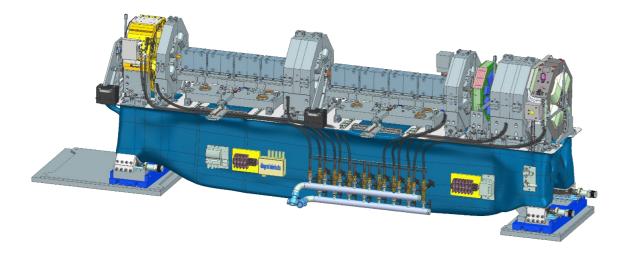
Momentum aperture sufficient for beam lifetime >10h (brightness mode)


Prototypes for the main critical components are on site




A mock-up girder is been assembled with prototypes and dummy magnets

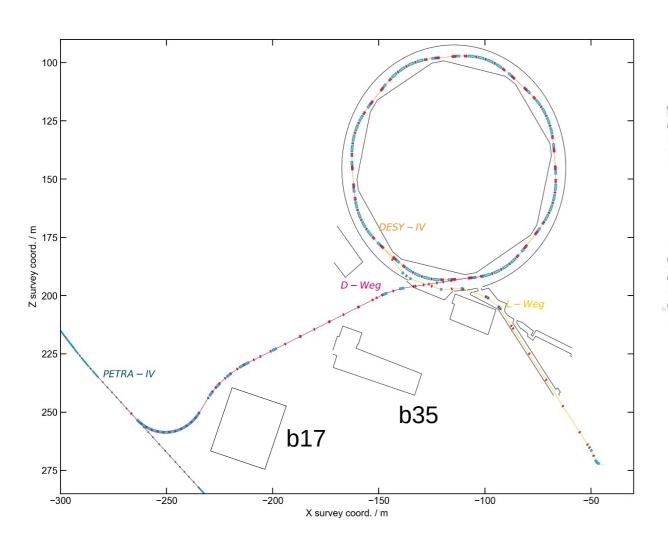


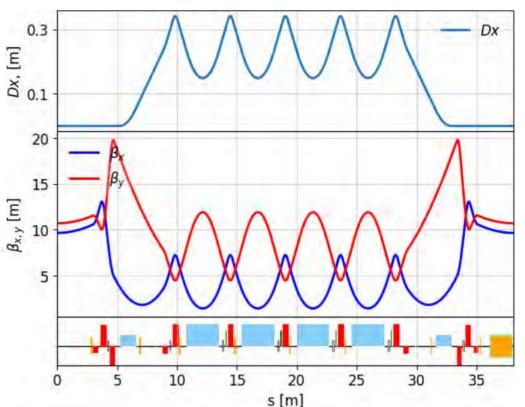


Mock-up girder is been assembled with prototypes and dummy magnets

Prototype girder is now in the testing phase

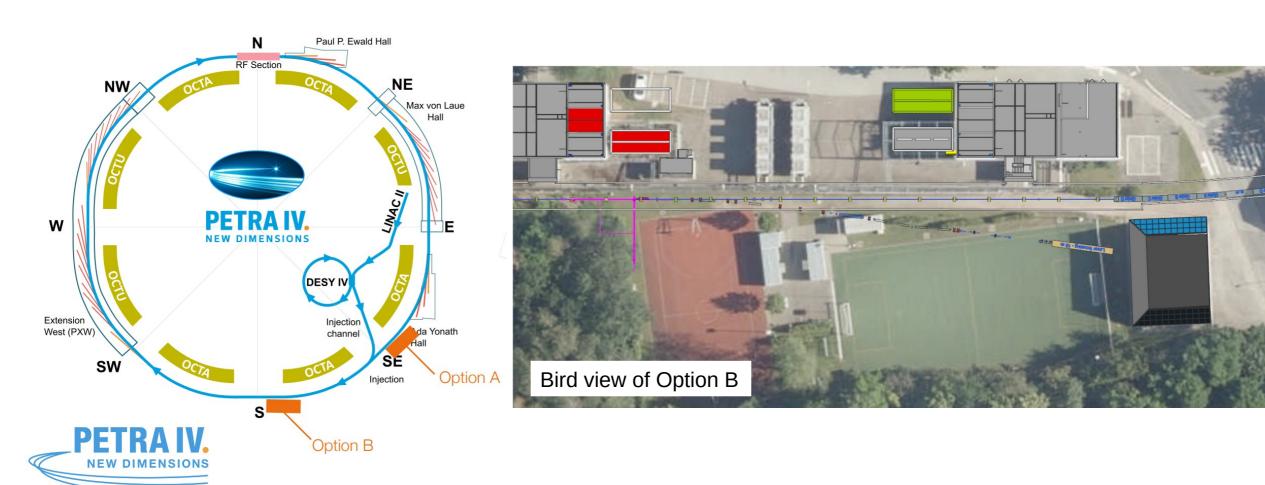
Magnets, vacuum equipment, diagnostics will be assembled, aligned and tested on girders


PETRA IV will have 288 girders



Injector baseline: construction of a new booster - DESY IV

with lower emittance than the existing DESY II (from 335 nm to 20 nm)



Laser Plasma Accelerator (LPA) as alternative injector option

Integration of the LPA into the storage ring straight sections is been studied

The LPA injector can sustain filling the ring and top-up operation with a charge of 250 pC at 10 Hz rep rate

Conclusion

The PETRA III complex operates with an availability of 98%, while aging effects become more and more noticeable.

A **6-month long shutdown** is planned to start in September 2026, with the major task to refurbish PIA and the interlock system in the injector chain.

PETRA IV got accepted for the national roadmap priority list

- → Evaluation for final funding approval in December 2025
- → Project start 2027 with 2.5 years of dark time in 2030-2032

Thank you for your attention

Full Coupling: new PETRA IV standard operating mode

PETRA IV brightness mode

1900 bunches 4 ns spacing 200 mA (1 nC per bunch)

standard mode: emittance 20 pm; 20% coupling (17pm/3pm); energy spread 0.1 %

	β _x (m)	β _y (m)	σ _x (μm)	σ_{x} (µrad)	σ _y (μ m)	σ_{y} (µrad)
Standard straights	2.2	2.2	6.1	2.8	2.7	1.2
Long straights	4.0	4.0	8.2	2.0	3.7	0.9
Long straight north	5.0	5.0	9.1	1.8	4.1	0.8

All other optics functions are zero: $\alpha_x = \alpha_y = D_x = D_x' = D_y' = 0$

full coupling mode: emittance 20 pm; 100% coupling (12pm/12pm); energy spread 0.1 %

	β _x (m)	β _y (m)	σ _x (μm)	σ_{x} (μ rad)	σ _y (μ m)	σ_{y} (µrad)
Standard straights	2.2	2.2	5.1	2.3	5.1	2.3
Long straights	4.0	4.0	6.9	1.7	6.9	1.7
Long straight north	5.0	5.0	7.7	1.5	7.7	1.5

Contact

Deutsches Elektronen- Michaela Schaumann

Synchrotron DESY MPE

Michaela.Schaumann@desy.de

www.desy.de 0049 40 8998 1769