

Elettra Report on behalf of the Elettra team

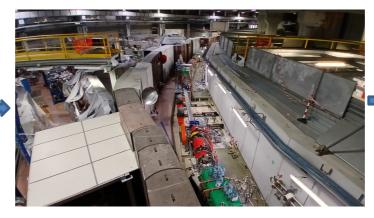
Operation schedule 2025

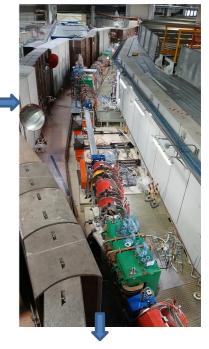
	Elettra Beam Time Calendar 2025 V3										
	Gennaio January	Febbraio February	Marzo March	Aprile April	Maggio May	Giugno June	Luglio July	Agosto August	Settembre September	Ottobre October	Novembre Dicembre December
	date M L N	W date M L N	W date M L N	W date M L N	W date M L N	W date M L	W date M L N	W date M L N	W date M L N	W e M L N	W date M L N W date M L N W
N N O	1 1 2 2 3 4	1 2	1 2	1 2 9 3 4	13 1 2 2 3	18	22 al al al al 3 4 5 6	2 3	1 2 3 4 5 6 7	1 35 2 3 4 5	1 2 3 48 5 5 V S D
L N O	7 8 9 201 10	3 4 5 6 7	3 4 5 6 7 8	7 8 10 9 10 11 12 13	5 6 202 14 7 8 9	2 3 19 4 5 6	7 8 23 9 10 11 12 13	4 5 27 6 7 8 9	8 9 32 10 11 12 13 14	6 7 36 8 9 10	3 8 9 M4 9 M M G V V S S S 9 14 D D
L N O	14 15 16 17 18	10 11 3 12 13 14 15	10 11 7 12 13 14 15 16	14 15 11 16 17 18 19	12 13 14 15 16 17 18	9 10 20 11 12 13 14 15	14 15 24 16 17 18 19 20	11 12 28 13 14 15 16 17	15 16 33 17 18 19 20 21	13 14 37 15 16 17 18	10 15 L M M 42 12 46 17 50 M G G 14 19 V 15 20 S D D
ī	20 1 21 1 22 2 23 2 24 2 25	17 18 19 20 21 22 23	17 18 8 19	21 22 23	19 20 21 22 23 24 25	16 17 21 18 19 20 21	21 22 25 23 24 25 26 27	18 19 29 20 21 22 23 24	22 23 34 24 25 26 27 28	20 21	17 22 L 18 23 M 43 19 47 24 SI M 20 25 G 21 26 V 22 27 S 23 28 D
ī	27 1 28 1 29 3 30 3 31	24 25 26 5 27 28	24 25	28 29	26 27 27 28 29 30 31	23 24 22 25 26 27 28 29	28 29 26 30 31	25 26 20 27 28 29 30 31	29 30 35	27 28	24 29 L 25 30 M 44 26 48 31 52 M 27 28 V 29 S

Even with the required preparation work for the dark period, the same % of user hours as in previous 2 years was provided in a single semester. For 2023 and 2024 the user operation time was reduced by 40% due to energy cost increase.

		STATIST	ICS	
TOTAL SHIFTS	2904	Hours	33,2%	of the year
Users shifts	2256	Hours	77,7%	of total
Users at 2.0 GeV	1440	Hours	63,8%	of users
Users at 2.4 GeV	816	Hours	36,2%	of users
SYRMEP dedicated shifts at 2.4 GeV	0	Hours	0,0%	of users
Accelerator Physics shifts	648	Hours	22,3%	of total
Shutdown	5856	Hours	66,8%	of the year
TOTAL shifts and shutdown	8760	Hours	365	days

End user mode on 2/7/2025 at 12:30 with a ceremony. The dark period started immediately after as programmed, first task the removal of the old machine

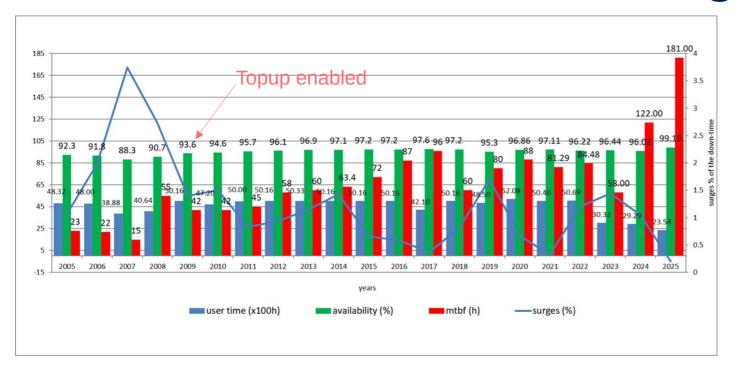




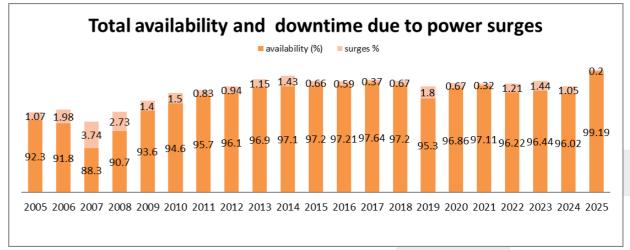
Dark period activities highlights Storage ring removal



Dark period activities highlights Service area removal



Elettra has been a very successful and stable storage ring

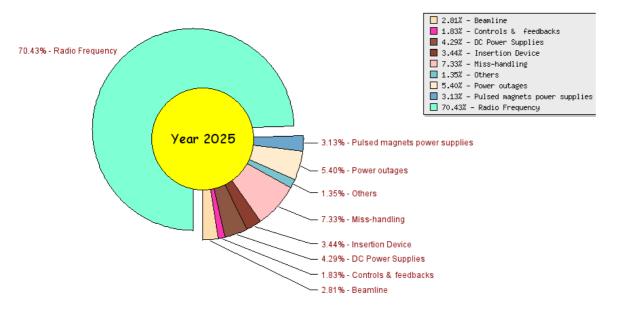


1993-2025, 32 years of operations with 5000 hours/year most of the time for users and a total of 35545 Ah

The 2025 was ... the best year in the entire Elettra history

Beam availability of 99.19 %.

MTBF of 181 hours.


Elettra Sincrotrone

2025 *faults*

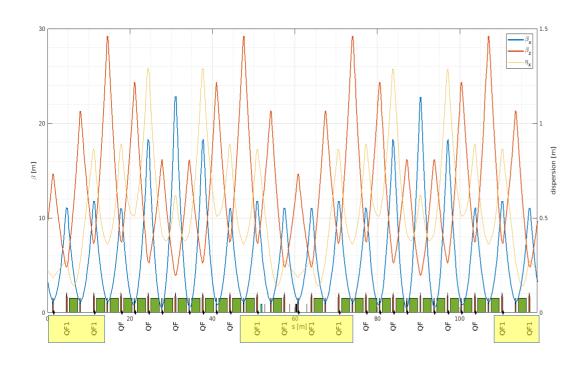
Major fault of 65h due to the failure of the cavity #3 feed-through, during machine physics studies in an unstable beam condition.

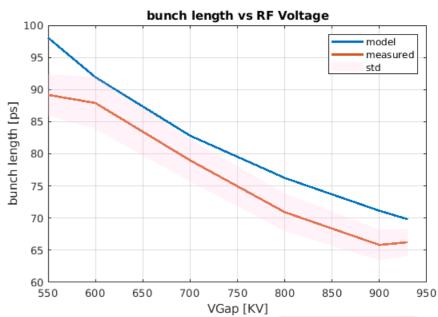
Only two downtimes due to system upgrades related to the Elettra 2.0 project.

- Short, consecutive beam interruptions due to a commissioning script executed on the machine instead of on the simulator
- Air-to-vacuum leak occurred the day before the last startup due to incorrect operation during frontend removal

Minor fault due to water leaks on steerers and RF cavity.

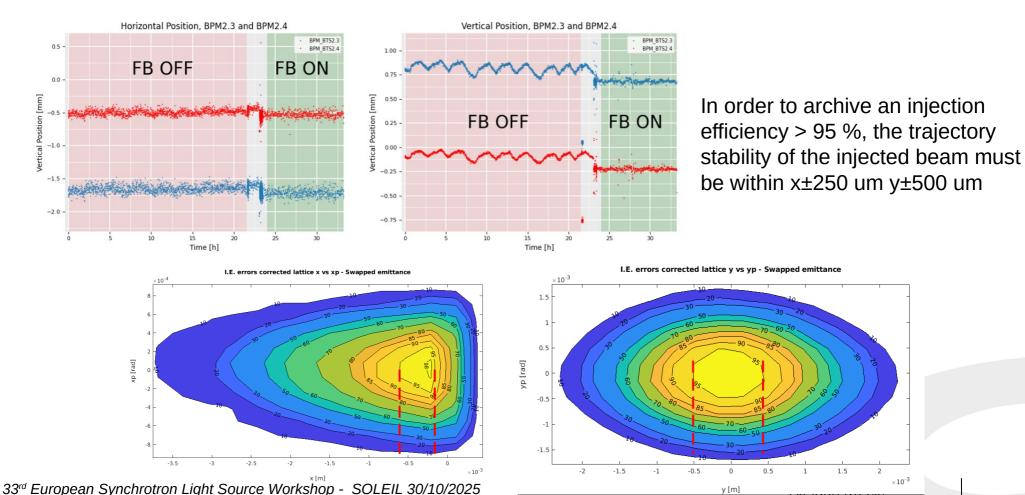
Last RUN with one RF cavity operated at limited power, due to reduced cooling.




Injector preparation

Booster

- Increased RF power from 0.6 MV to 1 MV → the bunch length reduces from 27 mm to 20 mm (InjEff +5%)
- Changed Booster optics, reducing the hor emittance from 230 nmrad down to 160 nmrad
- In Jan '26, an additional PS QF2 family will be introduced to reduce the horizontal emittance to 130 nmrad, increasing InjEff from 65% to >77%.
- Using the emittance exchange by crossing a coupling resonance InjEff: $77\% \rightarrow 97\%$



Injector preparation

- Booster To Storage ring
 - Implemented the Trajectory feedback along BTS to compensate the slow drifts
 - Good regults in vertical plane
 - Slight improvement in horizontal plane mainly due to bad PS stability during ramping (400 mA) → the Booster PS of quads and bends will be replaced in early 2026

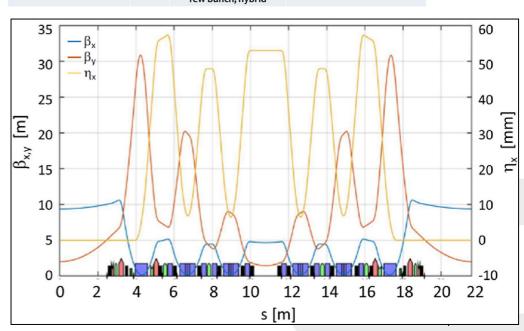
Elettra 2.0

Elettra 2.0 will operate mostly at 2.4 GeV with a bare **emittance** of 212 pm-rad. The **brilliance** will increase by more than 2 orders of magnitude at 10 keV, 36 times at 1 keV. The **coherence** level will increase by a factor of 60 at 1 keV.

Emittance reduction	48 times
Useful length at long straights	4.94 m
Useful length at short straights	1.26 m
Useful length as % of total length	28.5%

- Main operating energy 2.4 GeV
- Possibility for installing bunch deflection scheme
- Inclusion of super-bends and in-vacuum-undulators
- Increase of the number of slots available for insertion devices **Contraints:**
- Keep same building, injector and ring circumference
- Keep same source point and length for long straight sections

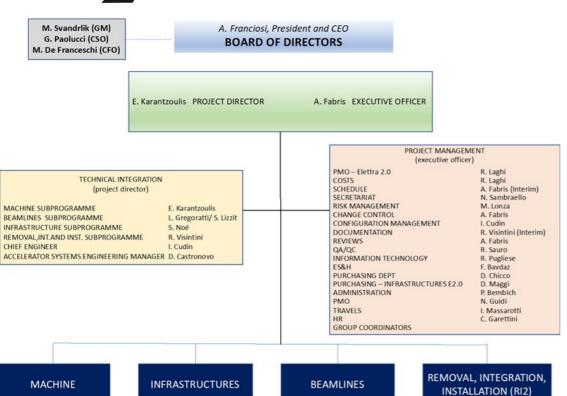
Parameter	Value	unit
Energy	2.4	GeV
Circumference	259.2	m
Emittance	212	pm rad
coupling	3	%
Harmonic number	432	
Average current	400	mA
Energy loss per turn	450 (620*)	keV
RF peak voltage	2	MV

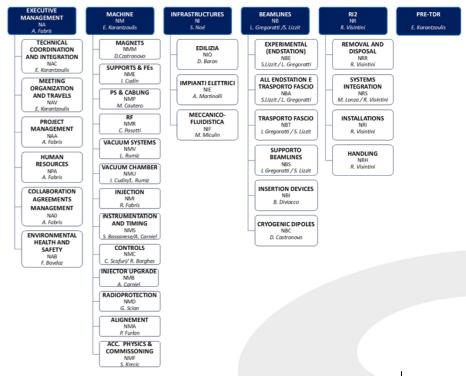

Parameter	Value	unit
Main radiofrequency	499.654	MHz
Bunch length rms	6 (15**)	ps
Energy spread rms	0.09	%
*! ! ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!		

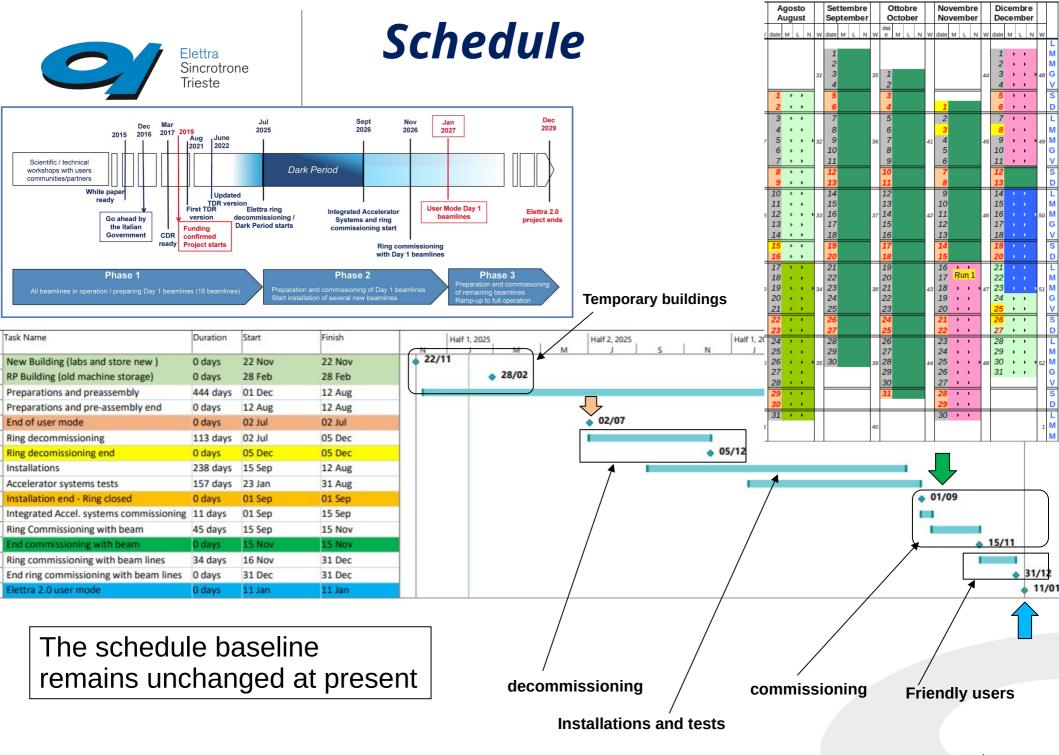
^{*} Including all IDs and SBs

^{**} Including 3HC at 2.5x

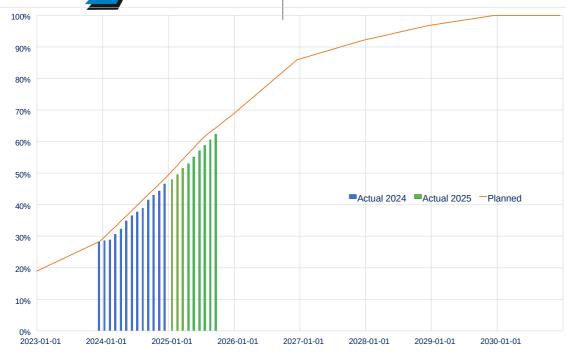
	Long Straights	Short Straights
σ_x (um) / σ_x '(urad)	36 / 5.7	63 / 6
σ _y (um) / σ _y '(urad)	3.2 / 1.9	3.5 / 1.8


		Elettra	Elettra 2.0
Operating for users		1994-2025	2027-
Beam energy	GeV	2.4 (25%) 2.0 (75%)	2.4 GeV (2.0 for some time)
Photon energies	keV	0.003-25	0.015 - 60
e – emittance - coupling	nm-rad	10 7 - 1%	0.212 0.150 - 3%
ID slots		11 Long + 1 short	11 Long + 5 short
Beam lines (IDs, Dipoles)	#	28 (19, 9)	32 (25 3 IVU, 7 3-4 from 3 SB)
e-beam size at LS (σx,σy)	μm	286,16	36,6
Brilliance (ph/s/mm²/mrad²/o.1%bw)		2X10 ¹⁹	1022
Coherence ratio at 1 keV	%	0.5	30
e - intensity	mA	160 310	400
Lattice -symmetry		2BA - 12 fold	S6BA-E(nhanced)-12 fold
Fill patterns		multi-bunch, single or few bunch, hybrid	whatever




33rd European Synchrotron Light Source Workshop - SOLEIL 30/10/2025

Project organization



Project progression

Ref: A. Fabris

	MONTH	ACTUAL	PLANNED	DELTA
	0	28,28%	28,28%	0,00%
	1	28,60%	29,97%	-1,37%
	2	28,91%	31,65%	-2,75%
	3	30,60%	33,34%	-2,74%
	4	32,29%	35,02%	-2,73%
2024	5	34,88%	36,71%	-1,83%
8	6	36,57%	38,39%	-1,82%
	7	37,77%	40,08%	-2,31%
	8	38,96%	41,76%	-2,80%
	9	41,57%	43,44%	-1,87%
	10	43,04%	45,13%	-2,09%
	11	44,33%	46,81%	-2,49%
	12	46,57%	48,50%	-1,93%
	MONTH	ACTUAL	PLANNED	DELTA
	0	46,57%	48,50%	-1,93%
	1	48,00%	50,35%	-2,35%
	2	49,59%	52,21%	-2,61%
	3	51,55%	54,06%	-2,51%
LO LO	5	55,15%	57,77%	-2,62%
2025	6	57,17%	59,63%	-2,46%
7	7	58,76%	61,48%	-2,72%
	8	60,57%	62,82%	-2,24%
	9		64,16%	
	10		65,50%	
	11		66,84%	

Percent Complete at the end of September 2025: 62,30 % (64.16% planned)

Percent complete= (value of work performed)/(budget approved at completion)*100

Project management tools are in place and actively used to monitor the project. They include: Work Breakdown Structure, Project Management Plan, Configuration Management Plan, Change Control Process, **Risk Management Plan**, Risk Registry, **Schedule and budget control**.

Spending overview

Total Value (Planned)

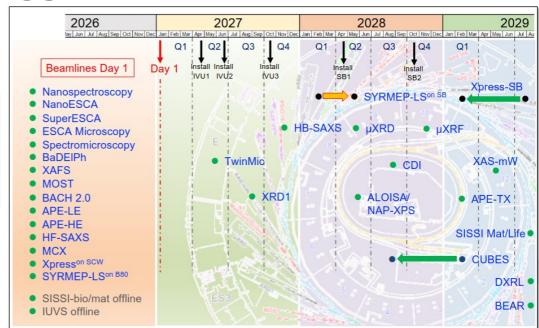
172,25 M€

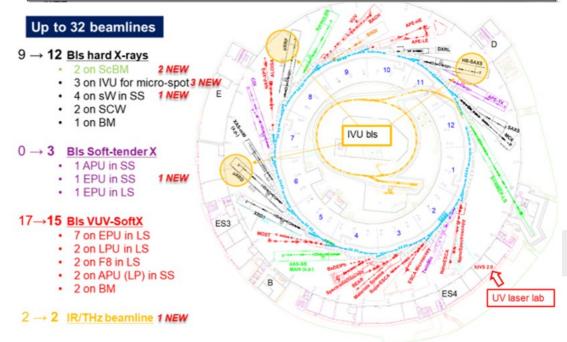
All values VAT included
All values updated to September 30, 2025

Total Value (Committed)

149,93 M€
(87,0 %)

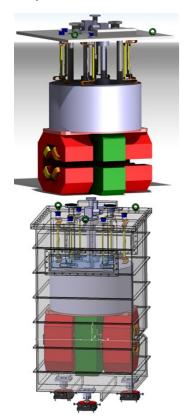
Total Value (To be committed)


22,32 M€


22,32 IVI€ (13,0 %)

Beam lines

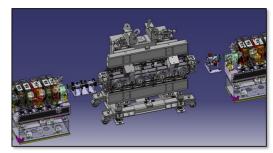
- Increased # of beam lines from 28 to 32 Also 5 in the short straights
- Shift towards tender and hard x-rays (65% proposals for hard x rays)
- Day 1 with 15 beam lines
 - 13 from Insertion Device
 - 2 from Bending
- > Short section:
 - 4 for RF cavity
 - 3 for diagnostics instrumentation
 - 5 for beam lines
- 8 beam lines are removed
- 9 beam lines keep the same position (IDs)
- 8 new beam lines



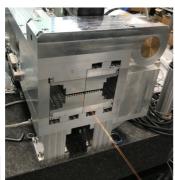
SC magnets and IDs

Ref. B. Diviacco

Two superconducting 6 T dipoles (60 – 140 keV)



Ref. D. Castronovo, M. Modica, EK


ID	Beamline	Position	(mm)	Nper	Length (m)	Bo (1)	Kmax
EU100	Nanospectr/NanoESCA	S01_Long	100.4	2 x 20	2 x 2.0	1.02	Ky=9.6
						0.78	Kx=7.3
APU	TwinMic	S02_Short	39.6	19	0.8	0.82	Ky=3.0
U46	SuperESCA/ESCAmicroscopy	S02_Long	46.0	2 x 49	4.6	0.92	Ky=4.0
Figure-8	Spectroµ/BaDElPh	S03_Long	140	2 x 16	2 x 2.2	0.75 0.14	Ky=9.8 Kx=3.6
ELICO	MOOTHE	CO4 T	CO 4	20	1.0		
EU50	MOST-HE	S04_Long	50.4	28	1.5	0.85	Ky=4.0 Kx=2.9
EU132	MOST-LE	S04 Long	132.0	18	2.6	0.40	Ky=4.9
						0.65	Kx=8.0
W96	XRD1	S05_Short	96.4	15 poles	0.8	1.83	Ky=16.5
IVU17	μXRD	S05_Long	17.0	117	2	0.94	Ky=1.5
W96	XAS-mW		96.4	15 poles	0.8	1.83	Ky=16.5
EU44	CDI	S06_Long	44	2 x 45	2 x 2.1	0.58	Ky=2.4
						0.58	Kx=2.4
Twin-APU	ALOISA	S07_Short	75.6	10	0.8	0.43	Ky=3.0
	NAP-XPS		39.6	19	0.8	0.46	Ky=1.7
IVU22	μXRF	S07_Long	22.0	90	2	1.27	Ky=2.6
EU77	BACH-LE	S08_Long	77	28	2.1	0.92	Ky=6.6
						0.64	Kx=4.6
EU47	BACH-HE	S08_Long	47	44	2.0	0.62	Ky=2.7
EU125	APE-LE	C00 I	125.36	17	2.1	0.62	Kx=2.7
EU125	APE-LE	S09_Long	125.36	17	2.1	0.77	Ky=9.0 Kx=6.9
EU44	APE-HE	S09 Long	44	45	2.1	0.58	Ky=2.4
2011		Doy_Long				0.58	Kx=2.4
IVU17	HB-SAXS	S10_Long	17.0	117	2	0.94	Ky=1.5
EU32	APE-TX	S11_Short	32.4	22	0.8	0.83	Ky=2.5
SCW	HE CANCACY/V	C11 I ama	64	401	1.5	0.61 2.5	Kx=1.9
Cr W	HF-SAXS/MCX/Xpress	S11_Long	64	49 poles	1.5	2.5	Ky=19.6

Four APPLE-II Undulator – outsourced to **KYMA**)

Short-period in-vacuum LPUs will be used to extend the photon energy range into the hard X-ray regime, reaching up to 18 keV (period 17.2-22 mm).

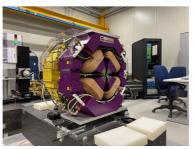
One of the requirements for the new lattice is to extend the number of beamlines. In fact five out of the twelve short straight sections are dedicated to the beam lines and due to space limitations compact undulators and wigglers are developed with a useful length of only 80 cm. Already 4 short lds are built in-house.

EU32: compact EPU for the APE-TX beamline

 λ_0 = 96.4 mm N_{POLES} = 15 gap = 12 mm B_0 = 1.8 T K = 16

Magnets and power supplies

MAGNETS


Ref. D. Castronovo

- First girder assembled
- All quadrupoles magnets delivered
- Sextupoles and octupoles magnets:
 - 4 out of 6 deliveries completed
 - Last delivery: scheduled early Jan. '26
- Bending magnets:
 - First of Series measured
 - In production
 - Last delivery scheduled mid Jan. '26

POWER SUPPLIES

- All dipoles PS delivered
- All multipolar magnets PS delivered
- Corrector PS:
 - 450 out of 700 built
 - Completion foreseen mid Nov. '25
- Contract for racks' assembly effective

Multipolar magnets P.S. in storage

Ref. M Cautero

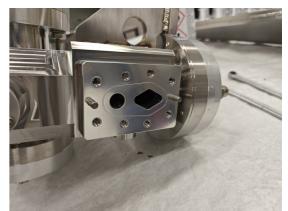
16

Chambers and vacuum systems

- Ion pumps and NEG pumps: delivered
- Vacuum gauges: delivered

Ref. L. Rumiz

- Vacuum valves: in production, First batch received, last scheduled in March '26
- Vacuum chambers:


Under construction

Ref. G. Scrimali

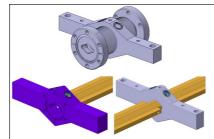
- Dipole chamber prototyope under SAT.
- Deliveries in batches. Last item scheduled in Aug. '26
- Other vacuum components (bellows, aborbers, tapers, etc): under construction, to be completed in Spring 26

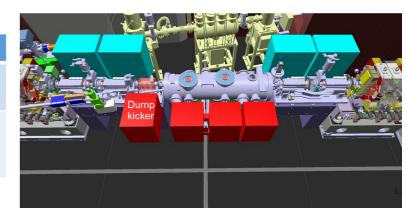
Dipole vacuum chamber tests

It's crucial to closely follow the production and validation process, including frequent visits to the manufacturers. Many issues were corrected during these stages, thereby preventing potential problems.

Photon absorbers

Supports, BPMs and Injection


8 granite slabs per achromat for the multipoles (1.5x0.6x0.3 m) + 6 for the dipoles in total 168 girders.


Component	State	Shipping to Elettra
Wedges	(MC SYSTEMS (AIRLOCK)	received
Magnets plates	(COSTAM)	received
Granite slabs	(ZALI)	received
Alignment feet	(PIGNAT/MEC+)	received
Basements	Ordered and arriving (JJ-XRAY)	12/2025
Grouting plates	Ordered and arriving (OCSAM/MICRA)	11/2025

item	status
BPM electronics	All delivered – 8 already installed in Elettra
BPM feedthrough s	Delivery expected to be completed in Feb. 2026

<u>Kickers</u>: Design phase from the contractor (Danfysik) completed. Delivery expected within June 2026.

<u>Septum</u>: Design phase from the contractor (Research Instruments) close to completion

<u>Ceramic Chambers</u>: Contract signed on January 2025 (Kyocera) . Delivery expected in Jan – Feb 2026

<u>Dump kicker</u>: The Contractor (Reasearch Instuments) received the invitation letter. Delivery expected in Jan 2027

Girders and mechanical supports for injection, all received

Storage space

Two buildings have been constructed 700m². These are used as laboratories for magnetic measurements, for vacuum systems, and for the storage of incoming and outgoing materials.

Storage space, vacuum lab, and magnet measurements lab

Mainly old machine

19

Elettra Sincrotrone

Conclusions

- Elettra has been a very successful storage ring for 32 years
- Elettra's performance has not been affected by the Elettra 2.0 project
- ❖ We are now concentrated on the completion of procurement of the remaining components and services, needed to ensure the start of the facility commissioning according to plan
- ❖ The schedule is continuously monitored, mitigation strategies are in place for possible delays, however at present we do not consider schedule baseline changes
- According to the schedule, the new ring will be completed for commissioning in September 2026

Thank you for your attention