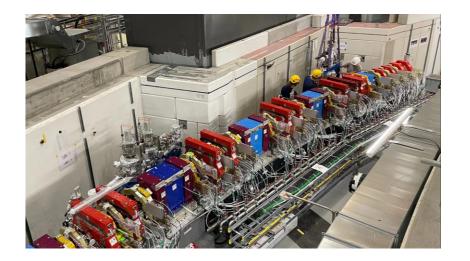


Beta function measurement at the SLS 2.0 storage ring

Jesús Ávila Pulido and Jonas Kallestrup European Synchrotron Light Source Workshop. 31 October 2025

SLS 2.0

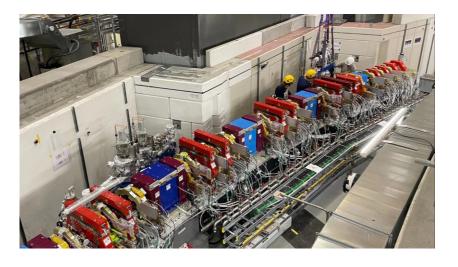
Parameters	SLS	SLS 2.0
Lattice type	TBA	7-BA
Number of arcs	12	12
Circumference (m)	288	288
Gross straight length (m)	79.9	83.6
Total bending angle (deg)	374.69	430.08
Working point Q_x/Q_y	20.43/8.74	39.37/15.22
Momentum compaction		
factor, first/second order (10^{-4})	6.04/36.3	1.05/7.94
Natural chromaticity ξ_x/ξ_y	-67.3/-21.0	-99.0/-33.4
Vertical emittance (pm)	≈10	10
Chromaticity in operation	5	1.0 - 1.5
Energy (GeV)	2.411	2.700
Natural emittance (pm)	5630	158 (135)
Energy spread (10^{-3})	0.88	1.16 (1.04)
Radiation loss per turn (keV)	549	688 (915)
Damping partition $J_x/J_y/J_s$	1.0/1.0/2.0	1.83/1.0/1.17
Damping time $\tau_x/\tau_y/\tau_s$ (ms)	8.65/8.67/4.34	4.14/7.58/6.47
Beam current (mA)	400	400
Maximum rf voltage (MV)	2.6	2.2
Harmonic number	480	480
Number of bunches	390-420	450
Beam lifetime (h)	≈10	≈9

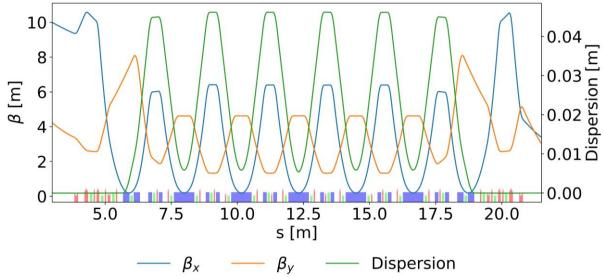


[1]

SLS 2.0

Parameters	SLS	SLS 2.0
Lattice type	TBA	7-BA
Number of arcs	12	12
Circumference (m)	288	288
Gross straight length (m)	79.9	83.6
Total bending angle (deg)	374.69	430.08
Working point Q_x/Q_y	20.43/8.74	39.37/15.22
Momentum compaction		
factor, first/second order (10^{-4})	6.04/36.3	1.05/7.94
Natural chromaticity ξ_x/ξ_y	-67.3/-21.0	-99.0/-33.4
Vertical emittance (pm)	≈10	10
Chromaticity in operation	5	1.0 - 1.5
Energy (GeV)	2.411	2.700
Natural emittance (pm)	5630	158 (135)
Energy spread (10^{-3})	0.88	1.16 (1.04)
Radiation loss per turn (keV)	549	688 (915)
Damping partition $J_x/J_y/J_s$	1.0/1.0/2.0	1.83/1.0/1.17
Damping time $\tau_x/\tau_y/\tau_s$ (ms)	8.65/8.67/4.34	4.14/7.58/6.47
Beam current (mA)	400	400
Maximum rf voltage (MV)	2.6	2.2
Harmonic number	480	480
Number of bunches	390-420	450
Beam lifetime (h)	≈10	≈9





[1]

Beta function

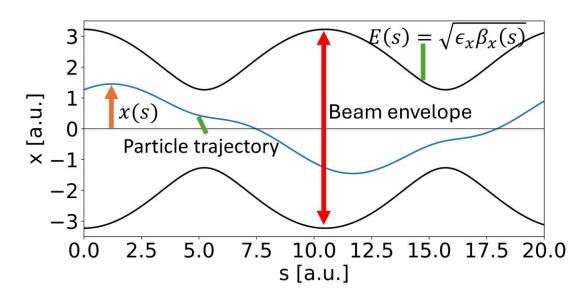
 Trajectory of a particle in the beam (betatron oscillations):

$$x(s) = \sqrt{2J_x\beta_x(s)}\cos[\varphi(s) + \theta]$$

Beam envelope:

$$E(s) = \pm \sqrt{\epsilon_x \beta_x(s)}, \qquad \epsilon_x = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

- ϵ_{χ} the **emittance**
- β_x is the **beta function**, it describes the transverse focusing properties of the storage ring
- If β_{χ} is different than expected, the beam quality is degraded



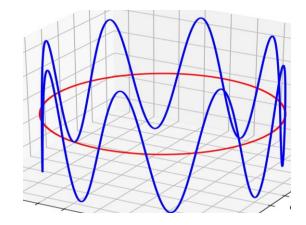
Quadrupole magnets, tune, and beta functions

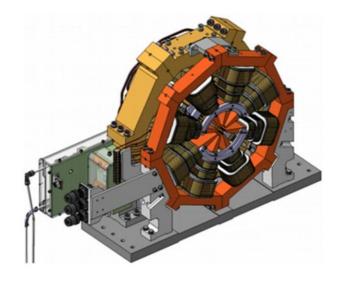
• Tune $(Q_{x,y})$: number of betatron oscillations per turn,

$$Q_{x,y} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}}$$

• Quadrupole magnets provide focusing and defocusing to the beam. Changing their strength (ΔK) changes the tune ($\Delta Q_{x,y}$) by,

$$(\Delta Q_{x,y})$$
 by,
$$\Delta Q_{x,y} \approx \pm \frac{\beta_{x,y} \Delta K}{4\pi} \longrightarrow \beta_{x,y} \approx \pm 4\pi \frac{\Delta Q_{x,y}}{\Delta K}$$





Quadrupole magnets, tune, and beta functions

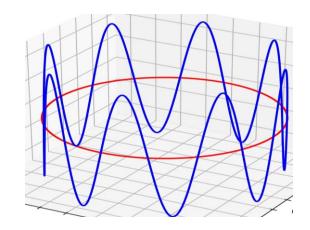
• Tune $(Q_{x,y})$: number of betatron oscillations per turn,

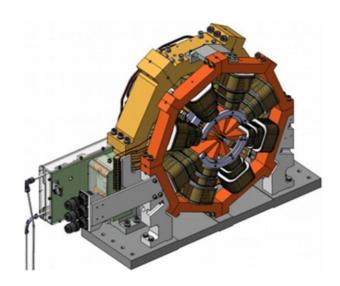
$$Q_{x,y} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}}$$

• Quadrupole magnets provide focusing and defocusing to the beam. Changing their strength (ΔK) changes the tune ($\Delta Q_{x,y}$). The beta function can be obtained from

$$\beta_{x,y} = \pm \frac{2}{\Delta K} \left\{ \cot(2\pi Q_{x,y}) \left[1 - \cos(2\pi \Delta Q_{x,y}) \right] + \sin(2\pi \Delta Q_{x,y}) \right\}$$
[2]

- This method is known as quadrupole variation (QV). It is a "direct" measurement
- SLS 2.0 has 264 quadrupoles and 115 beam position monitors (BPMs)



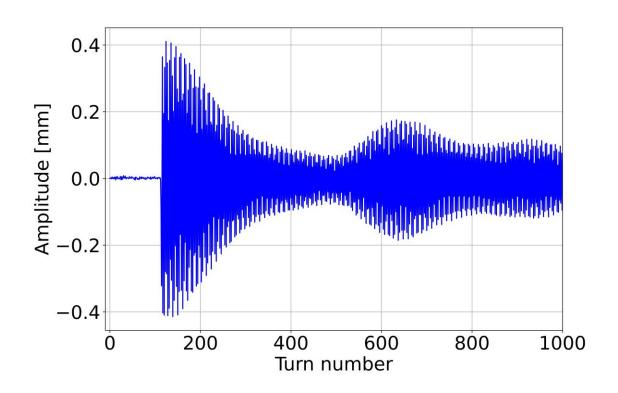


Measuring tune

1. Excite the beam

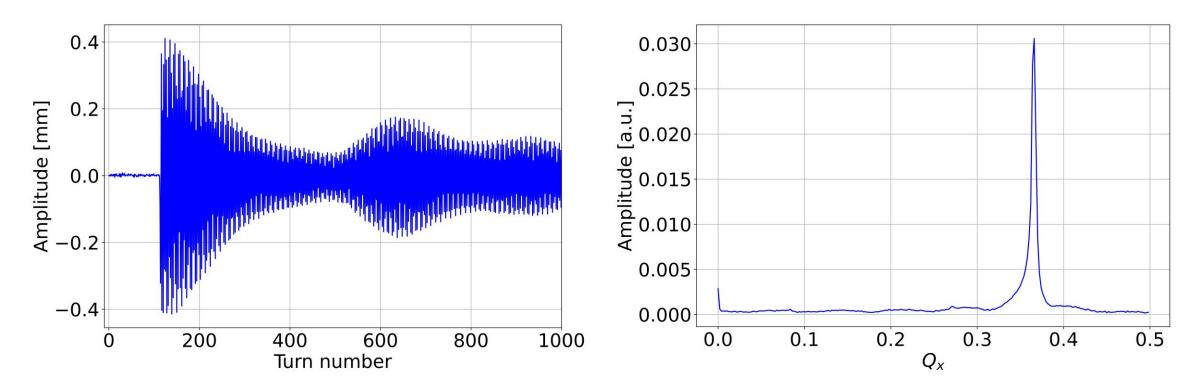
7

2. Record the centroid coordinates as a function of the number of turns



Measuring tune

- 1. Excite the beam
- 2. Record the centroid coordinates as a function of the number of turns
- Perform a Fourier Transform*

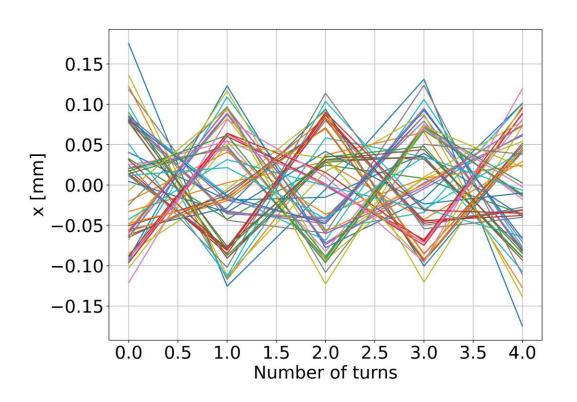


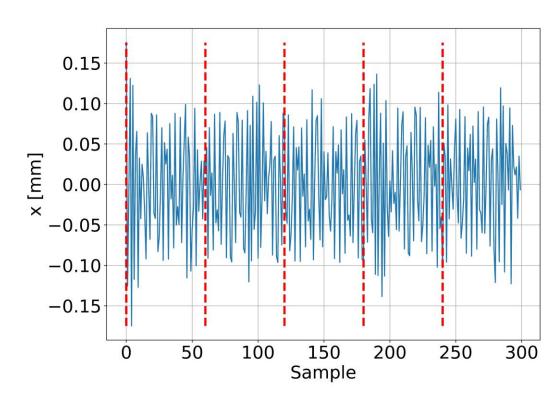
^{*} Tune was determined using the NAFF (Numerical Analysis of Fundamental Frequencies) method.

Mixed BPM Method

[3]

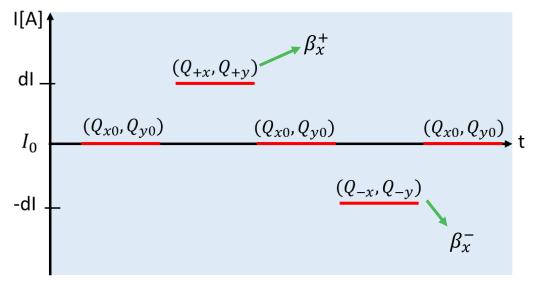
Use data of M BPMs for N turns with NAFF method



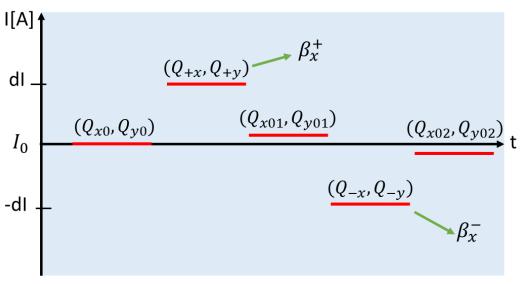


For 60 BPMs and 5 turns.

Experimental procedure



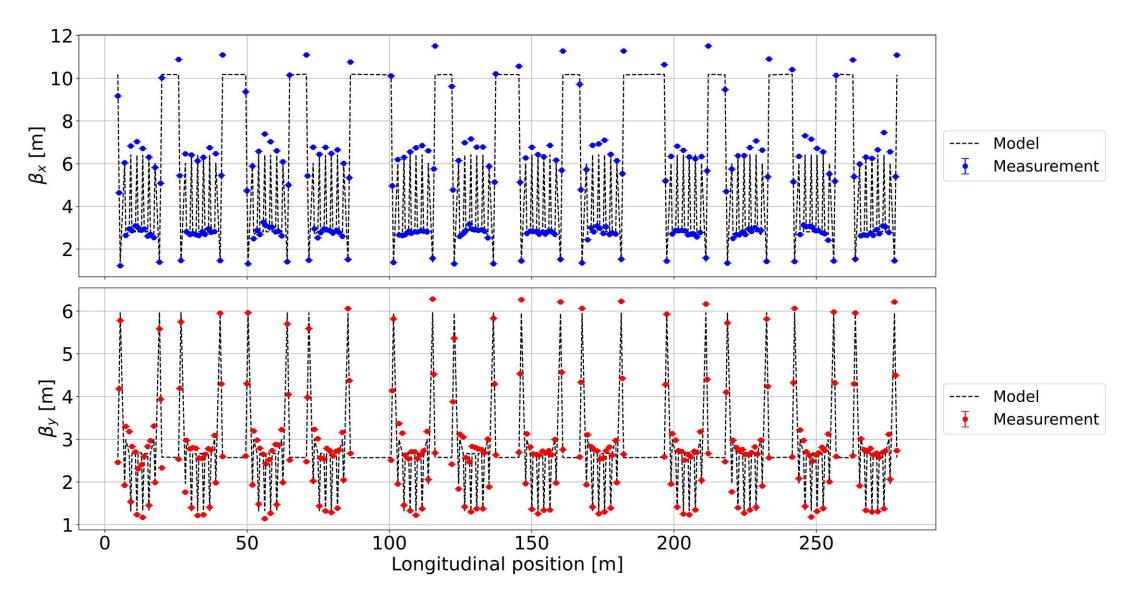
Varying the current of one quadrupole



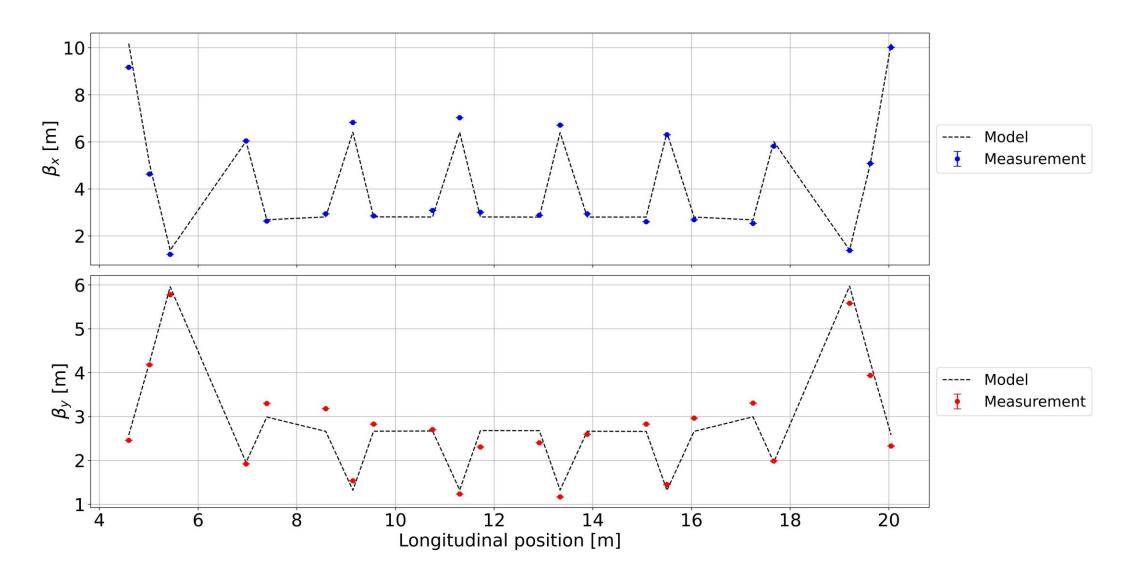
Not back to the original tune due to hysteresis

- $dI = 1 A \text{ (or } \Delta K \approx 0.0072 \ m^{-1} \text{)}$
- Tune measured five times and averaged
- Vary the current until $|Q_{x0}^* Q_{x0}| \le 1 \times 10^{-5}$
- Repeat in the 264 quadrupoles

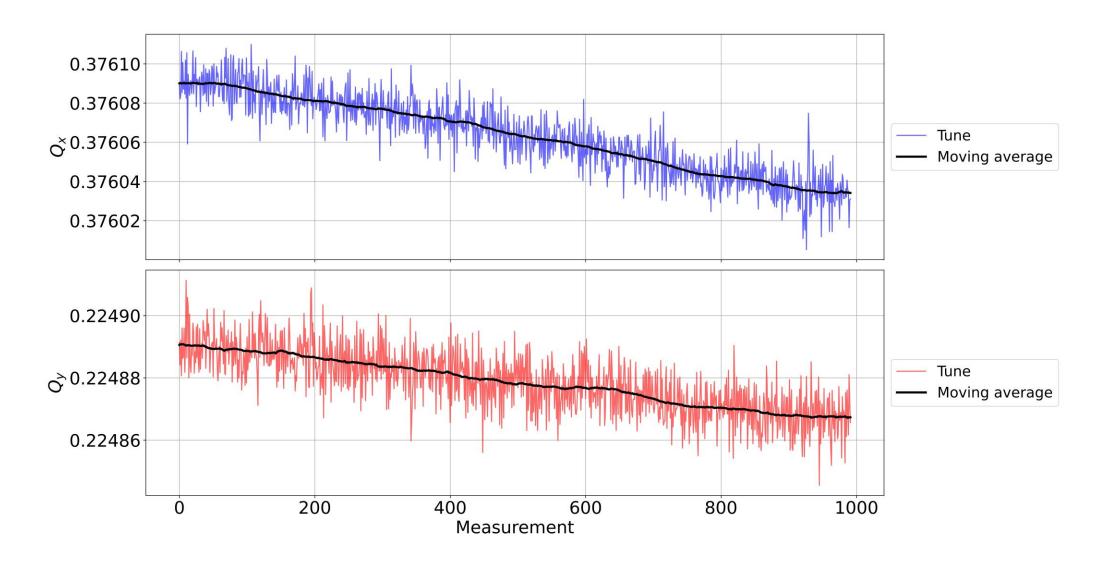
Beta function measurement



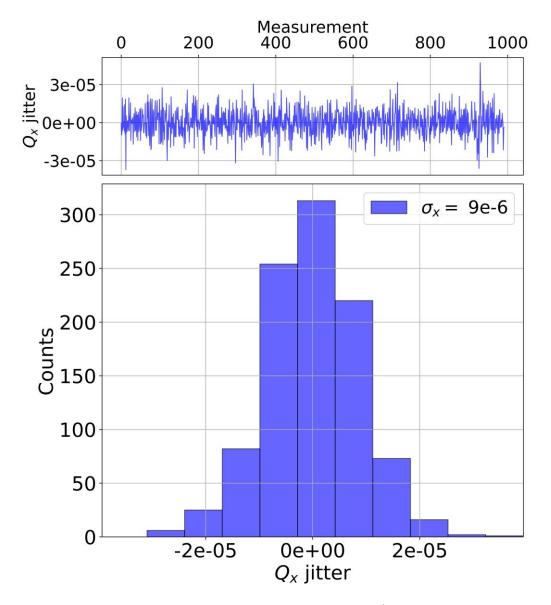
Beta function measurement

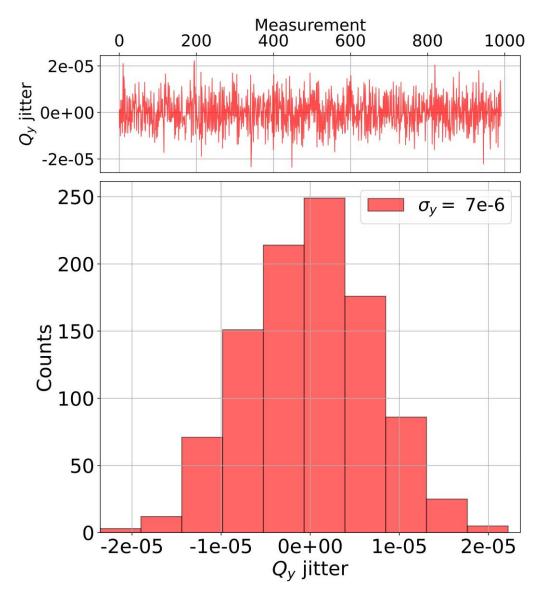


Tune noise

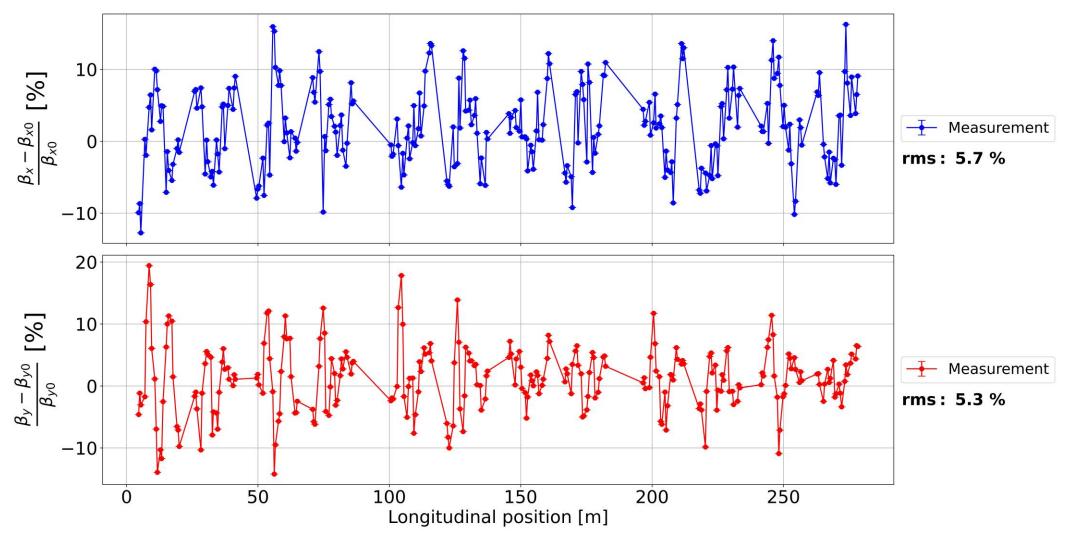


Tune noise



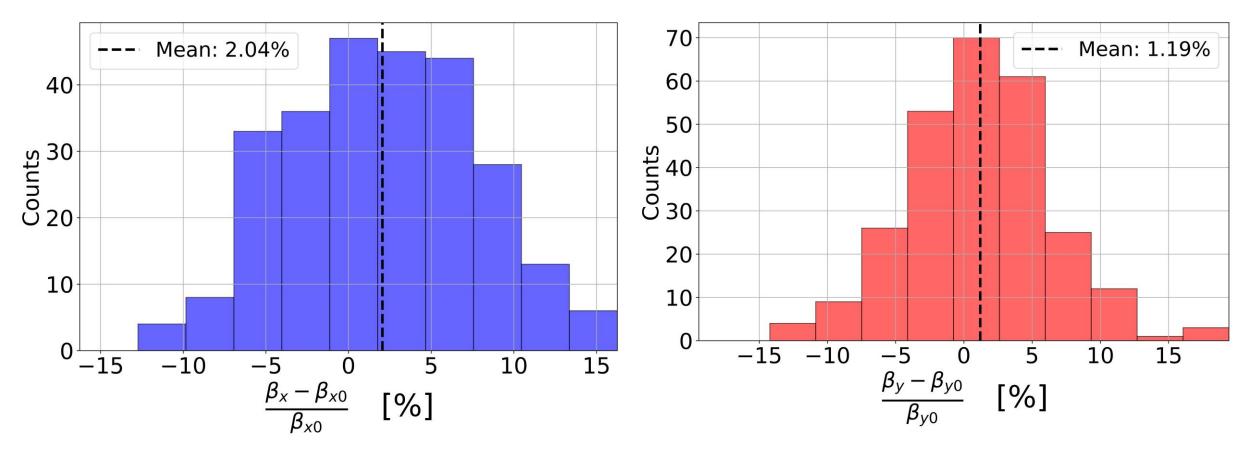


Beta-beat



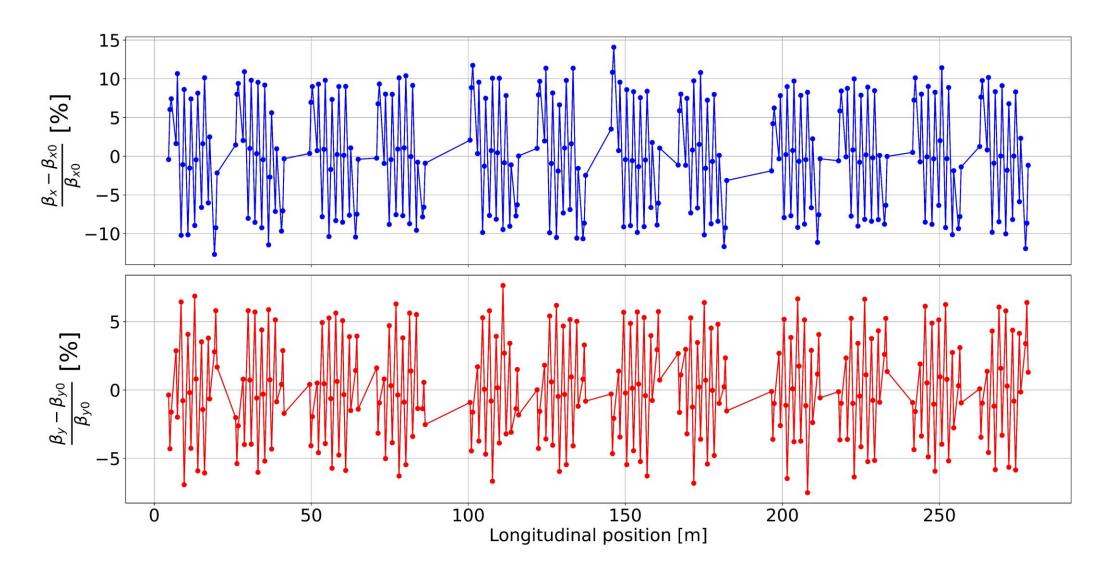
Targeted rms beta-beat: <2%

Beta-beat

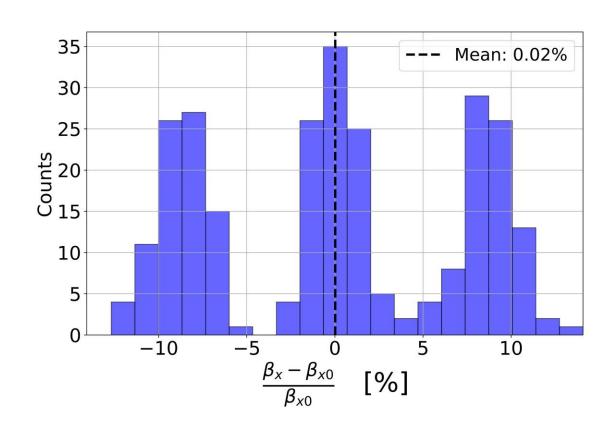


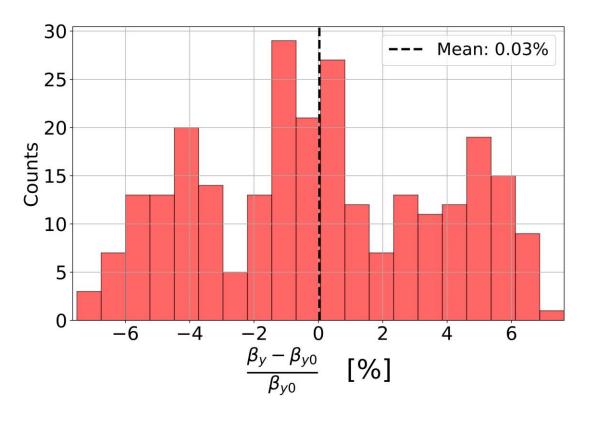
- Systematic errors:
 - Magnet transfer function.
 - Closed orbit distortions.

Simulation of beta-beat

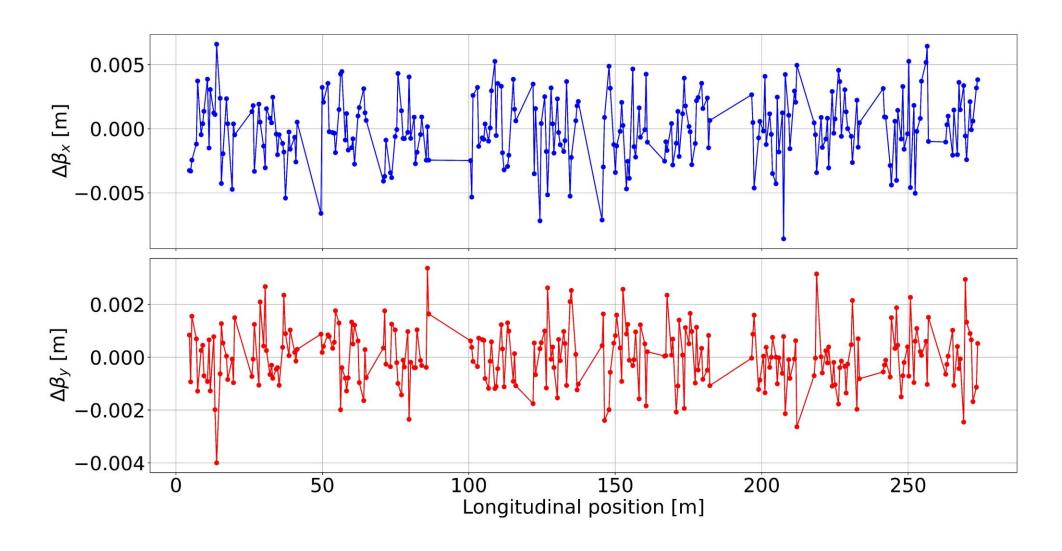


Simulation of beta-beat

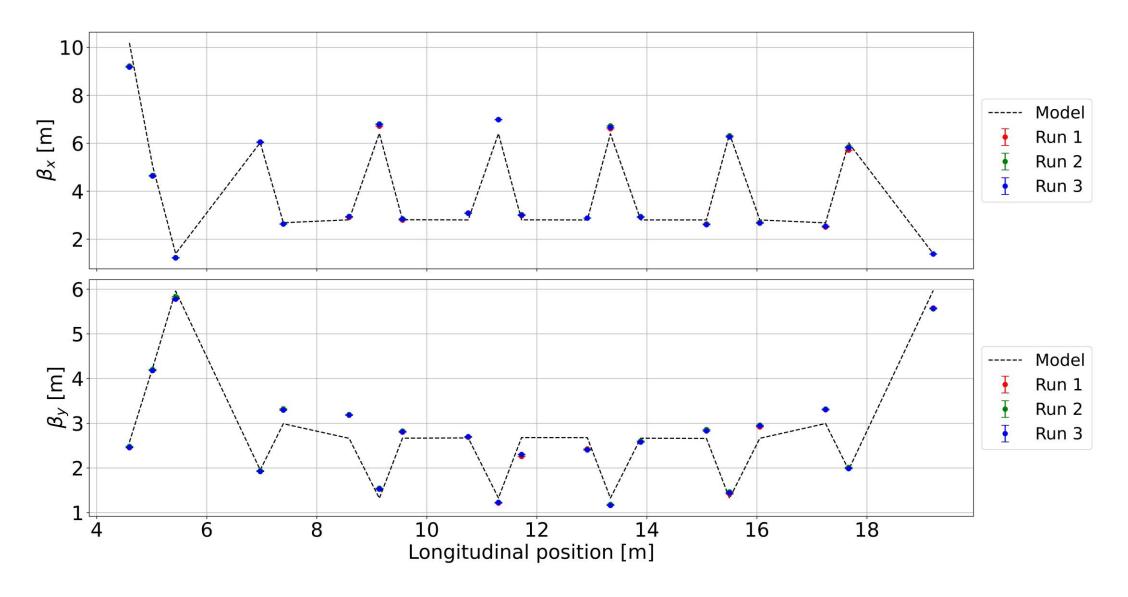




Changes in beta function due to closed orbit distortions



Reproducibility



Summary and outlook

Errors				
Туре	Origin	Contribution		
		$\Delta oldsymbol{eta}_{x}$ [cm]	$\Delta oldsymbol{eta}_y$ [cm]	
Statistical	Tune jitter	~0.55	~0.38	
Systematic	Closed orbit distortions	< 0.90	< 0.40	
	Magnet transfer function	-	-	

Summary and outlook

Errors				
Туре	Origin	Contribution		
		$\Delta oldsymbol{eta}_{x}$ [cm]	$\Delta oldsymbol{eta}_y$ [cm]	
Statistical	Tune jitter	~0.55	~0.38	
Systematic	Closed orbit distortions	< 0.90	< 0.40	
	Magnet transfer function	-	-	

Optics correction

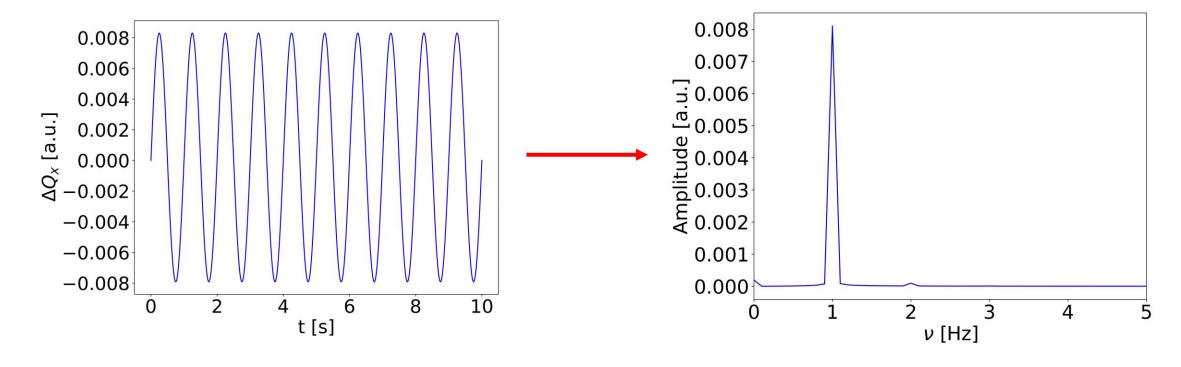
- We cannot correct the vertical and horizontal plane independently
- Errors contributing to the beta-beat are not necessarily in the quadrupoles
- We want to correct the beta-beat without perturbing the dispersion
- ❖ 112 additional quadrupoles to help with the correction

Outlook: Sinusoidal QV

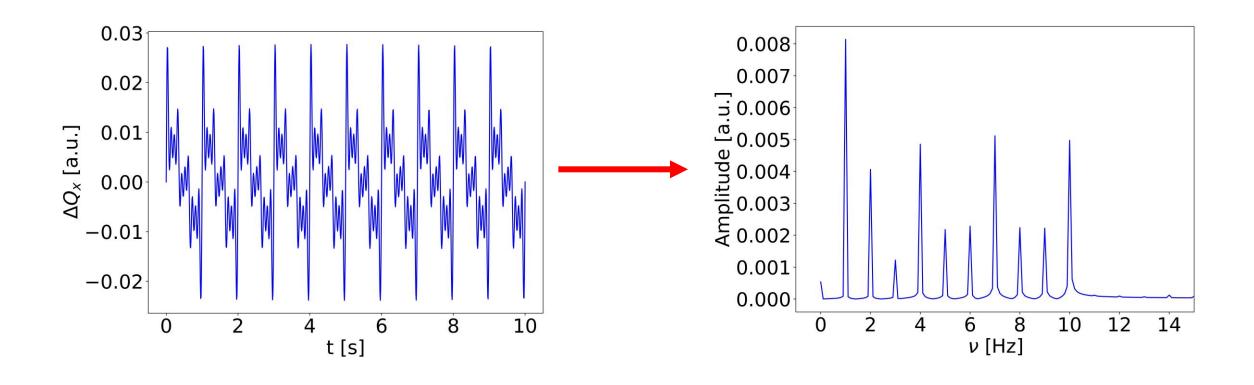
• QV is lengthy, ~2 hours for the whole ring. Working on a faster version of QV: Sinusoidal QV

Quadrupole strength:

$$K = A \sin(2\pi vt + \phi)$$



10 consecutive quadrupoles, A=0.01, ν from 1 to 10 Hz, $\phi=0$, $K=A\sin(2\pi\nu t + \phi)$



References

[1] A. Streun et al. "Swiss Light Source upgrade lattice design." In: Phys. Rev. Accel. Beams 26 (9 Sept. 2023), p. 091601. doi: 10.1103/PhysRevAccelBeams.26.091601.

[2] G. M. Michiko and F. Zimmermann. Measurement and Control of Charged Particle Beams. Heidelberg: Springer, 2003. DOI: 10.1007/978-3-662-08581-3.

[3] P. Zisopoulos, Y. Papaphilippou, and J. Laskar. "Refined betatron tune measurements by mixing beam position data". In: Phys. Rev. Accel. Beams 22 (7 July 2019), p. 071002. doi:10.1103/PhysRevAccelBeams.22.071002.

[4] A. Wolski. Beam Dynamics in High Energy Particle Accelerators. London: Imperial College Press, 2014.

Extra slides

NAFF

Consider the signal

$$w = x_{\text{norm}} - ip_{x,\text{norm}} = \sqrt{2J_x}e^{i\phi_x}$$

On the n-th turn,

$$\omega_n = \sqrt{2J_x}e^{i\phi_{x0}}e^{2\pi inQ_x}$$

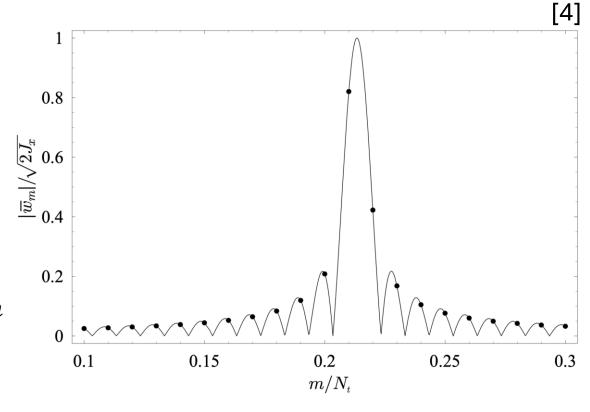
The Fourier transform is,

$$\bar{w}_m = \frac{1}{N} \sum_{n=0}^{N-1} e^{-2\pi i m n/N} w_n$$

$$ar{w}_m = \sqrt{2J_x}e^{i\phi_{x0}}rac{1-e^{2\pi i\Delta}}{1-e^{2\pi i\Delta/N}}, \quad \Delta = N \, frac(Q_x) - m$$

Let m be a real number,

$$frac(Q_x) = \frac{\widehat{m}}{N}$$



Finding an m that maximizes $|\overline{\omega}_m|$ implies searching for a frequency that gives the maximum overlap between the measured signal and a signal at the given frequency.

Mixed BPM Method

- Use data of M BPMs for N turns with NAFF method
- Vectorize $N \times M$ array. More samples (NM), and higher sample rate (*M* per turn)
- Transform the $N \times M$ array into a vector of $1 \times MN$ dimensions (BPM by BPM):

$$A = \begin{pmatrix} z_{11} & \cdots & z_{1M} \\ \cdots & \cdots & \cdots \\ z_{N1} & \cdots & z_{NM} \end{pmatrix} \longrightarrow \tilde{A} = (z_{11}z_{12} \cdots z_{NM-1}z_{NM})$$

Error for N turns:

$$\varepsilon(N) = |Q(N) - Q_0| \propto \frac{1}{N^l}$$

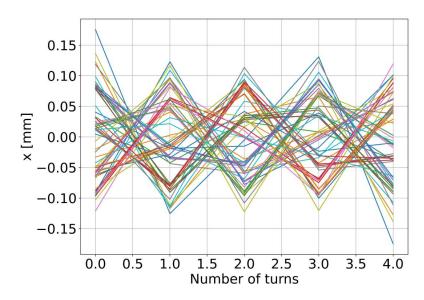
FFT:

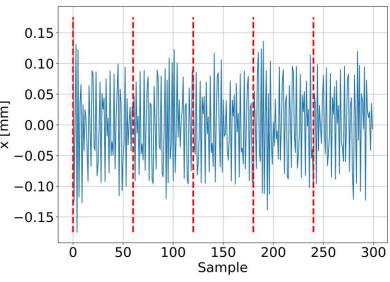
29

$$l = 1$$

- NAFF (Hann window order p): l = 2p + 2

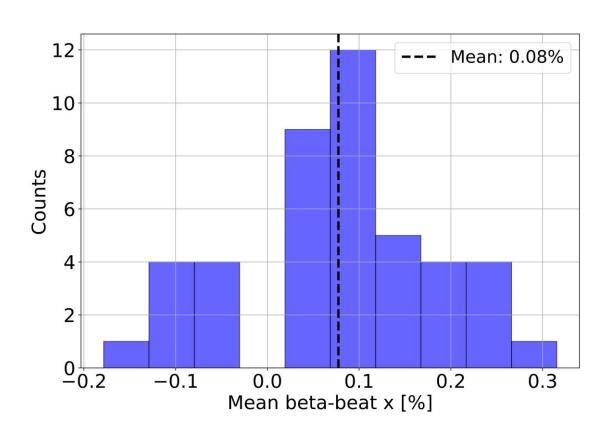
Mixed BPM method:
$$\varepsilon(N) \propto \frac{1}{M^{2p+1}N^{2p+2}}$$

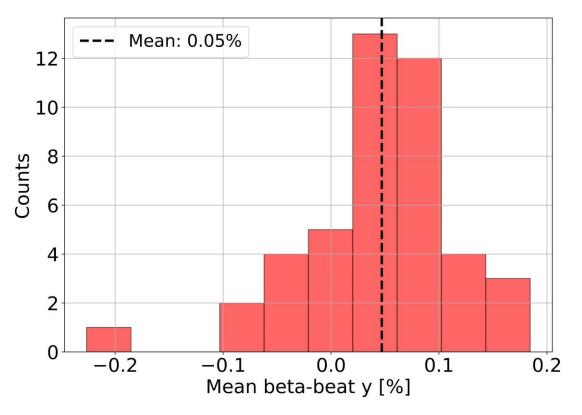




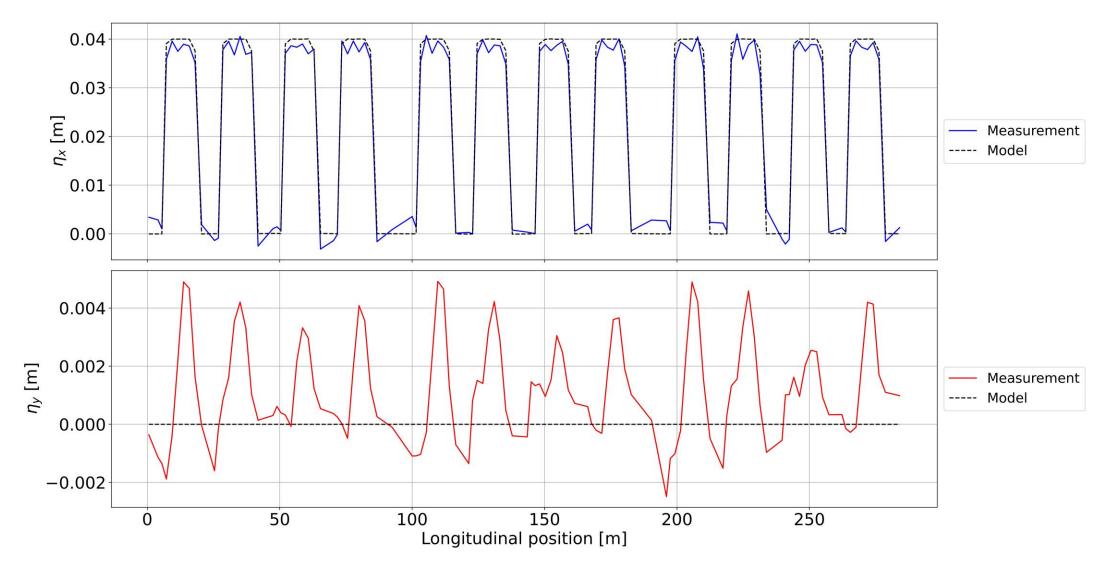
Simulation of beta-beat

Distribution of the mean beta-beat for 44 seeds.





Dispersion



Optics correction

Consider the n optics function $f_1, f_2, \dots, f_i, \dots, f_n$ and n quadrupoles with strengths $k_1, k_2, \dots, k_i, \dots, k_n$.

$$f_i = f_i(k_1, k_2, ..., k_i, ..., k_n)$$

We want to reach the ideal values $f_{1,s}$, $f_{2,s}$, ..., $f_{n,s}$. We have the initial values $f_{1,0}$, $f_{2,0}$, ..., $f_{n,0}$ and $k_{1,0}$, $k_{2,0}$, ..., $k_{n,0}$. We can do a first order expansion,

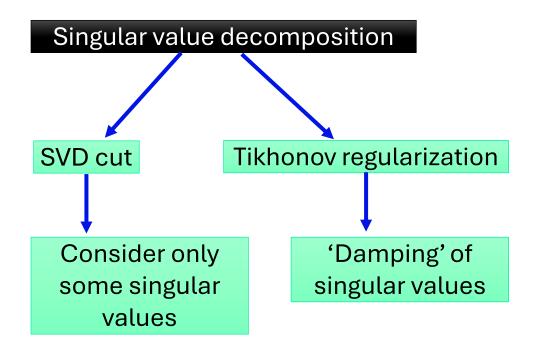
$$\begin{pmatrix} f_{1,s} \\ f_{2,s} \\ \vdots \\ f_{n,s} \end{pmatrix} - \begin{pmatrix} f_{1,0} \\ f_{2,0} \\ \vdots \\ f_{n,0} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial k_1} & \frac{\partial f_1}{\partial k_2} & \cdots & \frac{\partial f_1}{\partial k_n} \\ \frac{\partial f_2}{\partial k_1} & \frac{\partial f_2}{\partial k_2} & \cdots & \frac{\partial f_2}{\partial k_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial k_1} & \frac{\partial f_n}{\partial k_2} & \cdots & \frac{\partial f_n}{\partial k_n} \end{pmatrix} \begin{pmatrix} k_1 - k_{1,0} \\ k_2 - k_{2,0} \\ \vdots \\ k_n - k_{n,0} \end{pmatrix} = A(\vec{k} - \vec{k}_0)$$

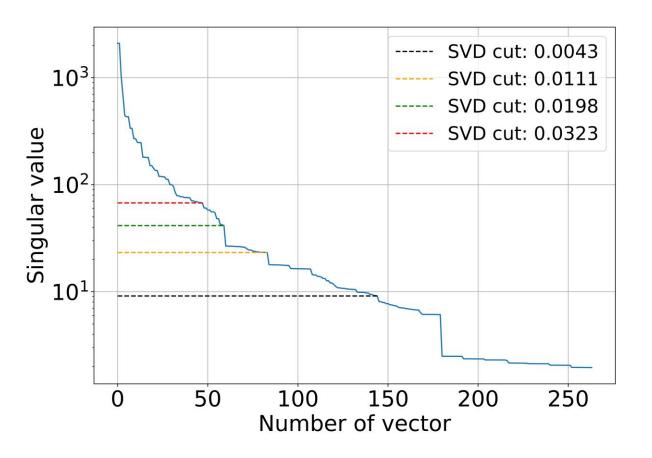
A is the response matrix.

Unfortunately, we would like match m optics function with only n quadrupoles, m > n.

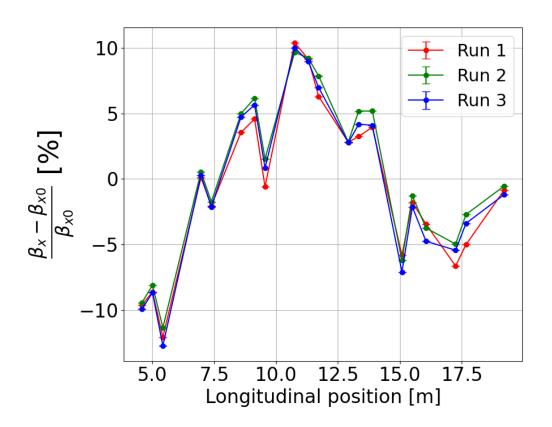
Singular value decomposition

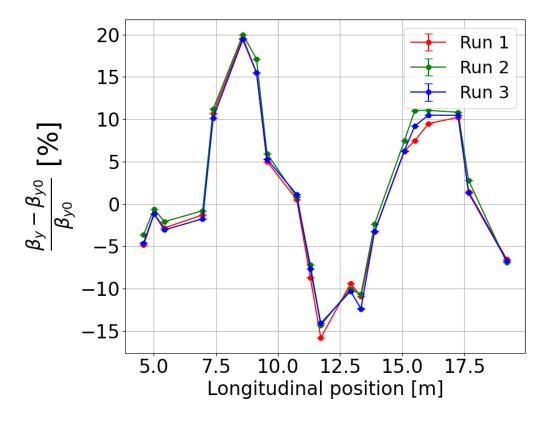
Optics correction



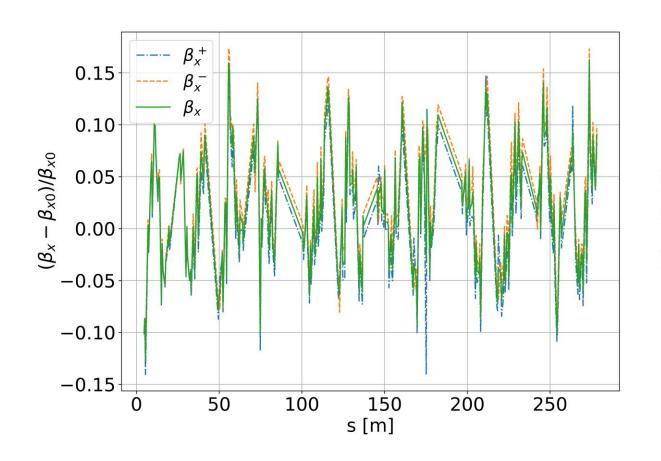


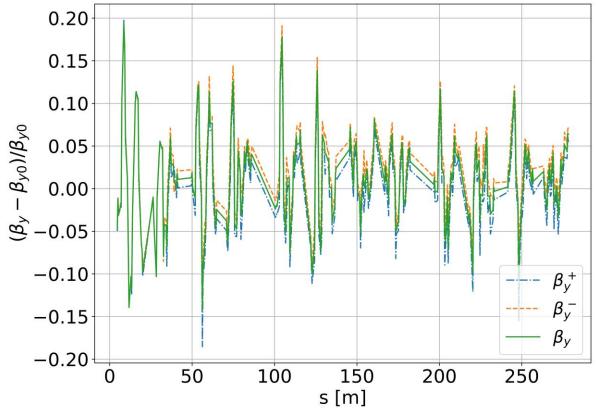
Reproducibility





34 29.10.2025





Average beta function

$$\beta_{\text{meas; } x,y} = \frac{1}{L_q} \int_{L_q} \beta_{x,y} ds$$

$$\begin{pmatrix} x_1 \\ x_1' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_0' \end{pmatrix}$$

$$A_{\text{quad}} = \begin{pmatrix} \cos(L_q \sqrt{|k|}) & \frac{\sin(L_q \sqrt{|k|})}{\sqrt{|k|}} \\ -\sqrt{|k|}\sin(L_q \sqrt{|k|}) & \cos(L_q \sqrt{|k|}) \end{pmatrix}$$

The Twiss parameters can also be transported,

$$\begin{pmatrix} \beta_1 \\ \alpha_1 \\ \gamma_1 \end{pmatrix} = \begin{pmatrix} a_{11}^2 & -2a_{11}a_{12} & a_{12}^2 \\ -a_{11}a_{21} & 2a_{12}a_{21} & -a_{12}a_{22} \\ a_{21}^2 & -2a_{21}a_{22} & a_{22}^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0, \end{pmatrix}$$

$$\beta_1 = a_{11}^2 \beta_0 - 2a_{11}a_{12}\alpha_0 + a_{12}^2 \gamma_0$$

Average beta function

$$\beta_{1} = \cos^{2}\left(L_{q}\sqrt{|k|}\right)\beta_{0} - 2\frac{1}{\sqrt{|k|}}\cos\left(L_{q}\sqrt{|k|}\right)\sin\left(L_{q}\sqrt{|k|}\right)\alpha_{0} + \frac{1}{|k|}\sin^{2}\left(L_{q}\sqrt{|k|}\right)\gamma_{0}$$

$$= \cos^{2}\left(L_{q}\sqrt{|k|}\right)\beta_{0} - \frac{1}{\sqrt{|k|}}\sin\left(2L_{q}\sqrt{|k|}\right)\alpha_{0} + \frac{1}{|k|}\sin^{2}\left(L_{q}\sqrt{|k|}\right)\gamma_{0},$$

$$L_{q}\sqrt{|k|} \ll 1,$$

$$\beta_{1} \approx \beta_{0} - \frac{2L_{q}\sqrt{|k|}}{\sqrt{|k|}}\alpha_{0} + \frac{L_{q}^{2}|k|}{|k|}\gamma_{0} = \beta_{0} - 2L_{q}\alpha_{0} + L_{q}^{2}\frac{1+\alpha^{2}}{\beta} \approx \beta_{0} - 2L_{q}\alpha_{0},$$

$$\beta_{\text{meas};x,y} = \frac{1}{L}\int_{0}^{L}(\beta_{0} - 2s\alpha_{0})ds = \beta_{0} - L\alpha_{0} = \beta(L/2)$$

The measured beta function is equivalent to the beta function in the middle of the quadrupole. In SLS 2.0, $L_q \approx 0.0601~m$, and the maximum magnet strength is $K = 0.037~m^{-1}$, $L_q K = 0.047 \ll 1$.

Equation for beta function determination

- For the horizontal motion of a particle in a quadrupole of strength k $[m^{-2}]$:
- $\frac{d^2x}{ds^2} = -kx$

• The effect of the quadrupole can be represented by a deflection: With $K=k\ l_q$ the integrated quadrupole strength in m^{-1} .

 $\Delta x' = -Kx$

Recall the one-turn matrix:

$$R_{ii} = \begin{pmatrix} \cos(2\pi Q_{x,y}) + \alpha_{x,y}\sin(2\pi Q_{x,y}) & \beta_{x,y}\sin(2\pi Q_{x,y}) \\ -\sin(2\pi Q_{x,y}) & \cos(2\pi Q_{x,y}) - \alpha_{x,y}\sin(2\pi Q_{x,y}) \end{pmatrix}$$
(1)

With trace $2\cos(2\pi Q)$.

• The effect of a change in gradient can be written as:

$$\begin{pmatrix} 1 & 0 \\ -(\pm \Delta K) & 1 \end{pmatrix} \qquad (2)$$

• Let $\bar{Q}_{x,y}=Q_{x,y}+\Delta Q_{x,y}$, the new tune after a change in gradient. The trace of the product of (1) and (2) should be equal to $2\cos(2\pi\bar{Q})$,

$$2\cos\left[2\pi(Q_{x,y} + \Delta Q_{x,y})\right] = 2\cos\left(2\pi Q_{x,y}\right) - \beta_{x,y}(\pm \Delta K)\sin\left(2\pi Q_{x,y}\right)$$
$$\beta_{x,y} = \pm \frac{2}{\Delta K}\left[\cot(2\pi Q_{x,y})\left\{1 - \cos(2\pi \Delta Q_{x,y})\right\} + \sin(2\pi \Delta Q_{x,y})\right]$$

If $2\pi Q_{x,y} \ll 1$ and $\cot(2\pi Q_{x,y}) \leq 1$,

$$\beta_{x,y} \approx \pm 4\pi \frac{\Delta Q_{x,y}}{\Delta K}$$

Approximation not valid close to integer and half-integer resonances and large ΔK .