

# Welcome to ESLS XXXIII

Amor Nadji

Director of Accelerators and Engineering Division SOLEIL II Project Leader

Synchrotron SOLEIL



# We last hosted ESLS workshop in 2006!







### SOLEIL and its Local Environment



### A Few Figures...

#### Statuts

On 16 October 2001, the CNRS and the CEA established a nonprofit civil company, Synchrotron SOLEIL, which was responsible for overseeing the construction and subsequent operation of SOLEIL. They respectively hold 72% and 28% of the shares. The region Île de France and the Departmental Council of Essonne have also provided €183 million in funding. The Centre region is likewise a partner in SOLEIL.











#### Staff

- 358 permanent posts
- 30 nationalities
  - ~ 15 postdocs
  - ~ 10 PhD positions
  - ~ 50 trainees



~ 30 cofinanced PhDs

~ 100 associated researchers

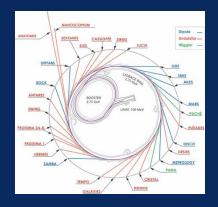
#### Budget

Investment Budget (2002-2012) ~ **634 M**€

Annual Budget

~ 65 M€

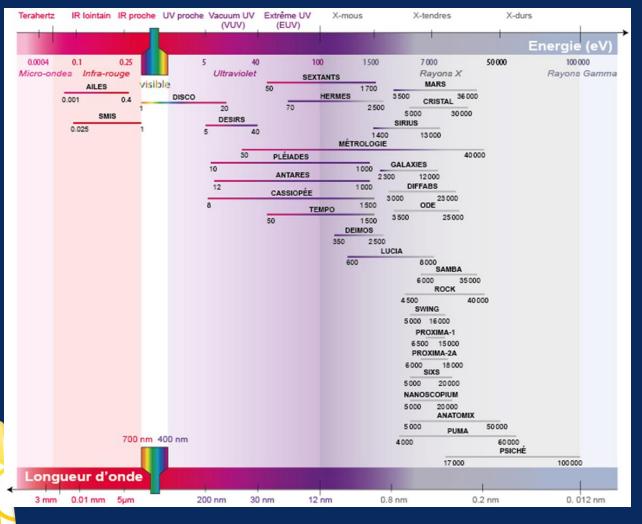



72%

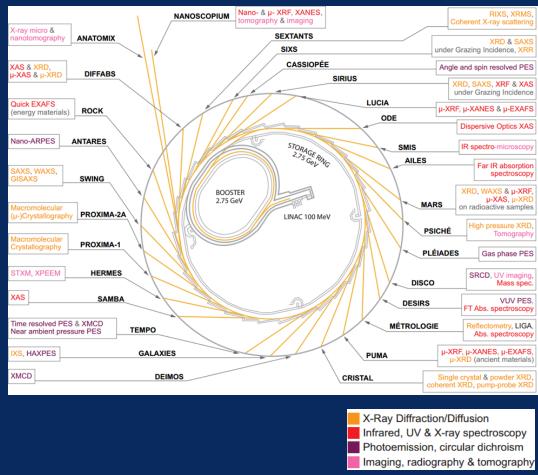


28%

#### Infrastructure & operation


- Storage ring: 354m, 2.75GeV
- 29 beamlines + 1 Cryo-EM
- 24/7 operation ~ 98.5% reliability
- 5019 hours of beamtime / year






### Synchrotron SOLEIL Specificities

#### A broad spectral range



#### A wide variety of characterization methods





### SOLEIL at a Glance



- 1500 submitted proposals, 600 accepted
- 3000 users from 900 labs
- 600 remote access
- 170 projects with industry



- 700 publications (~ 10000 since 2008)
- 150 IF > 9
- 100+ multi-beamlines projects



**Cutting-edge SR** research

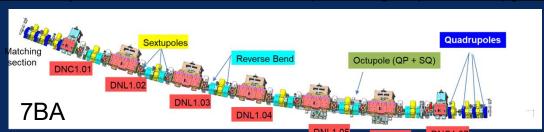
Social Commitment, education and outreach



- 180 scientific partnerships
- 50+ ANR projects
- ~ 10 technology transfers to SMEs
- 14 patents



- SOLEIL partner of 66 universities
- 90% of the projects involve PhD thesis
- 4000 visitors (30 000 visitors since 2010)
- 30 trainees and apprentices






## SOLEIL II Project at a Glance







Non-standard MBA lattice: 12 x 7BA + 8 x 4BA (20 cells)

85 pm.rad (+ matched β-functions) 500 mA / 354 m / 2.75 GeV





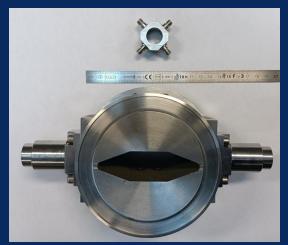


**Stage 1 (6 years)**: ~ 186 M€

**Stage 2 (5 years)**: ~ 123 M€



### SOLEIL II Machine Key Features


- 85 pm.rad (+ matched β-functions) / 500 mA / 354 m / 2.75 GeV
- Non-standard MBA lattice: 12 x 7BA + 8 x 4BA (20 cells)
- Quadrupole (120 T/m) and Sextupole (8500 T/m<sup>2</sup>): bore diameter = 16 mm
- NEG coated very small vacuum chamber diameter (12 mm)
- Extensive use of permanent magnets (all dipoles, RB and main quadrupoles)
- Off-axis injection
- Innovative high performance Multipole Injection Kicker (MIK)
- 22 straight sections (7 different lengths)
- Maintaining the broad energy range (far IR to hard X-rays)
- Energy savings and reduced energy footprint

#### Miniaturization!









BPM vacuum chamber SOLEIL/SOLEIL II

| Table 1: Comparison of the Main<br>Bare Lattice Parameters | Present      | SOLEIL II<br>V3631<br>w/o super-bends |  |
|------------------------------------------------------------|--------------|---------------------------------------|--|
| H-Emittance (2.75 GeV)                                     | 4 nm.rad     | 85 pm.rad                             |  |
| Circumference                                              | 354.10 m     | 353.98 m                              |  |
| Straight section number                                    | 24           | 20                                    |  |
| Long straight length                                       | 12.00 m      | 8.05 / 2*3.9 m                        |  |
| Medium straight length                                     | 7.00 m       | 3.79 / 4.26 m                         |  |
| Short straight length                                      | 3.80 m       | 3.19 m                                |  |
| Straight length ratio                                      | 46 %         | 25 %                                  |  |
| Betatron tunes H/V                                         | 18.16 / 10.2 | 54.2 / 18.3                           |  |
| Mom. comp. factor                                          | 4.18 10-4    | 1.07 10-4                             |  |
| RMS energy spread                                          | 0.102 %      | 0.087 %                               |  |
| Energy loss per turn w/o IDs                               | 917 keV      | 462 keV                               |  |
| Damping times x/z/s (ms)                                   | 3.3/3.3/6.6  | 7.9 /14 /11.8                         |  |
| RMS nat. bunch length                                      | 15.2 ps      | 8.7 ps                                |  |
| RF main cavity voltage                                     | 2.8 MV       | 1.7 MV                                |  |



Dipole Arc Vacuum chamber SOLEIL/SOLEIL II





### Storage Ring RF plant 4 x 190 kW power amplifiers



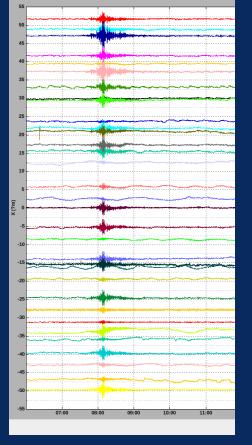
Today, it has become the preferred choice for most synchrotron radiation sources.





Thank you very much for your attention!

I hope you enjoy the workshop and your stay






# The Beam as Seismograph!: 7 Earthquakes Recorded in 2025

| ROUX<br>Guillaume 1        | AUTRE Tremblement de terre M7.6 Passage de<br>Drake              | 12/oct/25 0h   | 10/oct./25<br>23:25  | 11/oct./25<br>00:00  | Tremblement de terre de magnitude 7.6 Passage de Drake à 22:29 (UTC+02:00) L'onde a mis environ 1 heure (23h25) pour que l'on voie les premiers effets arriver sur Soleil (13400 km en surface). On observe des amplitudes max d'oscillation (pic/pic) sur SMIS et MAR6 dans le plan horizontal de ~1,6µm                                                      |
|----------------------------|------------------------------------------------------------------|----------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROUX<br>Guillaume 1        | AUTRE Tremblement de terre M7.4 Philippines                      | 12/oct./25 0h  | 10/oct./25<br>04:40  | 10/oct./25<br>05:05  | Tremblement de terre de magnitude 6.7 Philippines à 03:44 (UTC+02:00) L'onde a mis environ 50min (04h35) pour que l'on voie les premiers effets arriver sur Soleil (11257 km en surface). On observe des amplitudes max d'oscillation (pic/pic) sur SMIS et MARS dans le plan horizontal de ~2,6µm                                                             |
| ROUX<br>Guillaume 0        | AUTRE Tremblement de terre M6.9 Philippines                      | 01/oct./25 0h  | 30/sept./25<br>16:53 | 30/sept./25<br>17:17 | Tremblement de terre de magnitude 6.9 Philippines à 15:59 (UTC+02:00) L'onde a mis environ 54min (16h53) pour que l'on voie les premiers effets arriver sur Soleil (11257 km en surface). On observe des amplitudes max d'oscillation (pic/pic) sur SMIS et MARS dans le plan horizontal de ~1,09µm                                                            |
| ROUX<br>Guillaume 🐧        | AUTRE Tremblement de terre M7.8 Péninsule<br>Russe du Kamtchatka | 18/sept./25 Oh | 18/sept./25<br>21:36 | 18/sept./25<br>22:19 | Tremblement de terre de magnitude 7.4 Péninsule russe du Kamtchatka (128 km à l'est du port russe de Petropavlovsk-Kamtchatsky) à 20:58:12 (UTC+02:00) L'onde a mis environ 12min pour que l'on voit les premiers effets arriver sur Soleil (8500km). On observe des amplitudes max d'oscillation (pic/pic) sur SMIS et MARS dans le plan horizontal de ~3,5µm |
| ROUX<br>Guillaume ()       | AUTRE Tremblement de terre M7.4 Péninsule<br>Russe du Kamtchatka | 13/sept./25 Oh | 13/sept./25<br>05:25 | 13/sept./25<br>05:40 | Tremblement de terre de magnitude 7.4 Péninsule russe du Kamtchatka / (111 km à l'est du port russe de Petropavlovsk-Kamtchatsky) à .04:37:54 (UTC+02:00) L'onde a mis environ 1h pour arriver sur Soleil (8500km). On observe des amplitudes max d'oscillation (pic/pic) sur SMIS et MARS dans le plan horizontal de ~1,7µm                                   |
| JEANGERARD<br>Damien ()    | AUTRE Tremblement de terre M7.4 Péninsule<br>Russe du Kamtchatka | 20/juil./25 0h | 20/juil./25<br>09:30 | 20/juil./25<br>10:05 | Seisme à Loujno-Sakhalinsk (russie) de magnitude 7,4, visible sur les correcteurs et sur la position du faisceau dans l'anneau de 9h30 a 10h05 déplacement maxi de 3µm                                                                                                                                                                                         |
| ROUX<br>Guillaume <b>6</b> | AUTRE Tremblement de terre M7,7 Birmanie                         | 28/mars/25 0h  | 28/mars/25<br>08:02  | 28/mars/23<br>08:19  | Tremblement de terre M7,7 Birmanie à 07h20.<br>Suivie d'un réplique à 07h32.<br>Amplitude max à 08h08 7,8µm sur le point source H de SMIS (C02-D1)                                                                                                                                                                                                             |

Example of the effect of the one that occurred in Burma (M7.6).



Horizontal position variation of 1 to 6  $\mu$ m.

