

Pulsed, compact, low-background X-ray generator

L. Segui

Ref: I. Giomataris et al JCAP12(2020)043

XDEP Workshop 5-6 february 2024

Motivation

- A new type of x-ray generator has been conceived at IRFU (CEA Saclay)
 - Compact, light and radiopure for detector calibration
 - Compatible with vacuum
 - Possibility to tag events and to not affect data taking
- Based on the generation of electrons by a UV pulsed lamp on a metal photocathode and not by the thermionic effect
 - Gas discharge lamp
- Applications in rare event searches (Dark matter, axions, etc...)
 - Plan to be implemented in BabyIAXO to calibrate and monitor gain variations
 - It can be also operating during data taking

Working Principle

Working Principle

- Photo-electrons are accelerated to a thin-metallic anode
 - Selection of electrons absorber -- Different X-rays energies

- Radiation is produced by:
 - Characteristic x-rays
 - Bremsstrahlung x-ray photons
- Low material budget
 - For rare event experiments (dark matter, axions)
 - Selection of radio-pure materials "easy"
- No cooling needed. Voltage can be limited to 30 kV
- Low radiation levels expected
 - No radioactive source needed
- Portable and compact size -- Flexible design (few cm for < 8 keV)

Working Principle: modes

Continuous mode

- Commercial, high power lamp, with continuous emission
- High rate. Long term stability
- Calibration run ≠ data taking
- Low consumption (Typical HV +/- 6 kV, I_{p.e.} < 1µA)
- Lamp can be decoupled from the photocathode through a UV vacuum viewport

Pulsed Mode

- Lamp with Ar, Xe, Deuterium at <~ 1 bar
- Electrodes causing discharges in the gas
- Dimensions can be optimized to have time tagging of discharges ~1 ns
 - Calibration during data taking
- Very low consumption (~1 mW)
- Low rate

Working Principle: configurations

Semi-transparent mode

- Self-absorption in the anode
 - Thickness to be optimized. Usually ~ μm
 - Fragility problems
- Even at the optimum, the produced rate will be less that the reflective
 - Sometimes enough, don't need to have max rate

Reflective Mode

- No limitation for the thickness of the anode metal,
 - x-rays are emitted from the same side that the electrons fall.
 - Maximum possible x-ray emission efficiency.

Optimization

- Lamp
 - Gas : ²H, Ar or Xe safer gases (diff wavelength and timing)
 - UV-window : transmission matched with gas (MgF₂,quartz, sapphire, ...)
- Photocathode Q.E.
 - AI, CsI, polycrystalline diamond on quartz, DLC, B₄C
 - Viewport might introduce a higher cut-off
- Lamp power → impact on rate
 - RC circuit controls intensity and repetition rate
- Materials
 - Robust, vaccum compatibles, radiopure
- Smooth parallel plates for HV to reduce size
- Anode
 - Material: Al, Ti, Steel, Fe, Cu, combination...
 - Thickness critical:
 - Spectrum depends on the thickness. In general few mum

Material	Characteristic x-rays (eV)		
	Κα1	Κα2	Κβ
AI	1486.3	1486.7	1557.5
Cr	5414.7	5405.5	5946.7
Ti	4510.8	4504.9	4931.8
Cu	8027.8	8047.8	8905.3

From "X-Ray Data Booklet" LBNL

Optimization

- MonteCarlo simulations using GEANT4
- Minimal geometry to obtain x-ray spectrum
- Different materials and thickness

- > X-ray lines emerge from the Bremsstrahlung spectrum
 - Down to self-absorption and up to 12 keV (e- energy)
- ≻ ↑↑ X-ray efficiency for a thickness close to the range of electrons in the material
- ➤ Thicker converter → larger separation between characteristics X-rays and bremsstrahlung
 - Higher probability to absorb low energy X-rays

Energy spectrum from electrons energy of 12 keV at impacting at target with different thickness

Experimental Results

- First: a test bench using a continous off-the-shelf UV lamp
- Different electrons absorbers tested

Cez

Hamamatsu L2D2 (type L10904)

2 µm Cu (on 12 µm Kapton)

Voltages	Total Rate	Rate in the $8.0~{\rm keV}$ peak
$(e^- \text{ energy } (keV))$	(Hz)	(Hz)
10.5	4567 ± 67.6	305.9 ± 17.5
10.8	5449 ± 73.8	504.7 ± 22.5
11.5	6351 ± 79.7	732.2 ± 27.1
12.0	7161 ± 84.6	932.5 ± 30.5
12.5	8160 ± 90.3	1162 ± 34.1
13.0	8889 ± 94.3	1395 ± 37.3
13.25	9360 ± 96.7	1521 ± 39.0
13.5	14540 ± 120.6	2406 ± 49.0

Experimental Results

Pulsed Lamp – proof of principle

- Same setup but replacing the continus lamp by a Deuterium pulse one
- Sapphire window
- Discharge every second
- Not high initial photon rate

Data with the MCA (no trigger from lamp)

Very initial reusits for proof of concept

Possible Implementation in BabyIAXO

- To be placed between telescope and Micromegas
- Off the focal line
- Calibration, gain study during parking periods OR
- Continuos calibration

Possible Implementation in BabyIAXO

- Setup at IRFU (data in 2020 with SDD, now with a Micromegas installed)
- The photocathode crystal and the anode are placed entirely inside the magnet Vacuum
- HV: standard SHV feedthrough, $V_{max} < 9 \text{ kV}$

Possible Implementation in BabyIAXO

- Implemented in IAXO-D1 (at Zaragoza group)
- Reflective mode + Two targets at same time

- Filters to reduce Bremsstrahlung
- Lamp very high rate \rightarrow discharges
- On-going work towards stability and optimization

Conclusions

New xray generator based on the generation of electrons by a UV pulsed lamp on a metal photocathode and not by the thermionic effect

X-ray energies can be chosen changing the target. Efficiency determined by thickness

Compact, light, radiopure, low consumption

Low radiation expected. No cooling needed. V can be kept <30 kV. Easier to implement

To calibrate rare event experiments. Tagging of events possible, can be used during data taking

Posible implementation in babyIAXO under study. Setups at IRFU and Zaragoza

Thank you!

Laura Segui Iglesia Laura.segui@cea.fr

L. Segui -- XDEP Workshop 5-6 Feb. 2024

