

ALMA MATER STUDIORUM Università di Bologna

X-ray detectors with ultrahigh sensitivity based on high performance printed Organic Field Effect Transistors

Laura Basiricò ^{1,2}, Ilaria Fratelli ^{1,2} Andrea Ciavatti ^{1,2}, Adrian Tamayo ³, Carme Martínez-Domingo ³, Paolo Branchini ⁴, Elisabetta Colantoni ⁴, Stefania De Rosa ⁴, Luca Tortora ⁴, Adriano Contillo ⁵, Raul Santiago ⁶, Stefan T. Bromley ^{6,7}, John E. Anthony ⁸, Marta Mas-Torrent ³, Ioannis Kymissis ⁹, and Beatrice Fraboni^{1,2}

- 1. Physics and Astronomy Department of the University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna (BO), Italy
- 2. Institute of Nuclear Physics, INFN-BO, Viale Berti Pichat 6/2, 40127, Bologna (BO), Italy
- 3. Institut de Ciència de Materials de Barcelona and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Campus de la Universitat Autònoma de Barcelona, Cerdanyola, E-08193 Barcelona, Spain
- 4. Surface Analysis Laboratory INFN Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
- 5. Elettra-Sincrotrone Trieste, Trieste, Italy
- 6. Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain
- 7. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- 8. Center for Applied Energy Research, University of Kentucky, United States
- 9. Department of Electrical Engineering, Columbia University, New York, NY 10027, United States

SEMICONDUCTOR PHYSICS GROUP @ DEPARTMENT OF PHYSICS AND ASTRONOMY-UNIVERSITY OF BOLOGNA

ORGANIC-HYBRID SEMICONDUCTORS FOR IONIZING RADIATION DETECTION - ADVANTAGES

Low-cost large-area printing techniques

Space Missions

New generation of low cost, low power supply and mechanical flexible Thin and comformable sensor panels and patches

management

THIN FILM AND LARGE AREA: WHERE?

- Light-weight for limited amount of materials
- Possibility to **cover large surfaces** at low cost
- Real-time beam monitoring
- Radiation hard to strong fluxes due to weak radiation abortion
- In-situ dose evaluation thank to conformability to human tissues

UNIVERSITA DI BOLOGNA

FLEXIBLE LARGE AREA ELECTRONICS: **MATERIAL PLATFORMS**

High Mobility Oxide Semiconductors

e.g. Ga_xIn_yZn_zO

Physical/solution deposizion $\mu = 10 - 50 \text{ cm}^2/\text{Vs}$

T. Cramer et al., Sc.Adv., 4, 63 (2018)

Organic Semiconductors

e.g. TIPS pentacene

solution deposition $\mu = 1 \text{ cm}^2/\text{Vs}$

L. Basiricò et al. Nature Comm 7, 13063 (2016) I.Temino et al., Nature Comm. 11, 235 (2020)

Perovskites

e. g. MAPbl₃

solution deposition μ = 1-600 cm²/Vs

A.Ciavatti et al., Adv. Funct. Mater. 29, 1902346 (2019)

FLEXIBLE LARGE AREA ELECTRONICS: MATERIAL PLATFORMS

High Mobility Oxide Semiconductors

e.g. Ga_xIn_yZn_ZO

Physical/solution deposizion $\mu = 10 - 50 \text{ cm}^2/\text{Vs}$

T. Cramer et al., Sc.Adv., 4, 63 (2018)

Organic Semiconductors

e.g. TIPS pentacene

solution deposition $\mu = 1 \text{ cm}^2/\text{Vs}$

L. Basiricò et al. Nature Comm 7, 13063 (2016) I.Temino et al., Nature Comm. 11, 235 (2020) e. g. MAPbl₃

solution deposition $\mu = 1-600 \text{ cm}^{2/}\text{Vs}$

A.Ciavatti et al., Adv. Funct. Mater. 29, 1902346 (2019)

ORGANIC/HYBRID MATERIALS FOR X-RAY RADIATION DETECTION

Sensitivity: 10⁶ µC/Gy cm² @ 0.2V @ RT >> than polyCZT or a-Se

L. Basiricò et al., Adv. Mater. Technol. **2020,** 2000475

7

WHY HIGH SENSITIVITY?

WHY HIGH SENSITIVITY? CHARGE TRAPS AND PHOTOCONDUCTIVE GAIN

V_{DS}=0.2V

- trapping of n-type carriers
- injecting contacts

under X-ray irradiation:

- 1) Additional electrons and holes are generated.
- 2) Holes drift along the electric field and reach the collecting electrode while electrons remain trapped in deep trap states and act as "doping centers".
- 3) To guarantee charge neutrality, holes are continuously emitted from the injecting electrode.
- 4) Recombination process takes place

G = photoconductive gain $\approx 10^6$

PHOTOCONDUCTIVE GAIN MECHANISM

DEVICE ARCHITECTURE/TRANSPORT PROPERTIES Organic Field Effect Transistors as X-Rays detectors

BAMS: Bar Assisted Meniscous Shearing Technique **BOTTOM GATE – BOTTOM CONTACTS OFETs**

DEVICE ARCHITECTURE/TRANSPORT PROPERTIES Organic Field Effect Transistors as X-Rays detectors

BAMS: Bar Assisted Meniscous Shearing Technique **BOTTOM GATE – BOTTOM CONTACTS OFETs**

UNIVERSITÀ DI BOLOGNA

JNIVERSITÀ DI BOLOGN*i*

ToF-SIMS: Time-of-Flight Secondary Ion Mass Spectrometry

DEVICE ARCHITECTURE/TRANSPORT PROPERTIES ROLE OF TRAP STATES: Dielectric/SC interface

High electronic performance and reproducibility

Lower trap density for holes (3.9 \pm 0.9)x10¹¹ eV⁻¹ cm⁻² with PS (6.2 \pm 1.1)x10¹² eV⁻¹ cm⁻² w/o PS

ToF-SIMS

DEVICE ARCHITECTURE/TRANSPORT PROPERTIES ROLE OF TRAP STATES: Dielectric/SC interface

Photocurrent =
$$\mathbf{G} \cdot I_{CC} = \frac{\tau_r}{\tau_t} \cdot I_{CC} = \frac{\alpha}{\gamma} \cdot \left[\alpha \cdot ln \left(\frac{\boldsymbol{\rho}_0}{\rho_X} \right) \right]^{\frac{1-\gamma}{\gamma}} \cdot \frac{V \boldsymbol{\mu}}{L^2} \cdot I_{CC}$$

Mo-target X-ray tube 35 kV dose rates in the range 5–55 mGy s⁻¹

BLENDS OSC:Polystyrene passivates the interface state with the dielectric \rightarrow >> *hole mobility*

ALMA MATER STUDIORUN Università di Bologn*i*

I. Temiño, et al Nat. Commun. 11, 1-10 (2020).

FILM MORPHOLOGY: ROLE of GRAIN BOUNDARIES

Photocurrent =
$$\mathbf{G} \cdot I_{CC} = \frac{\tau_r}{\tau_t} \cdot I_{CC} = \frac{\alpha}{\gamma} \cdot \left[\alpha \cdot ln \left(\frac{\boldsymbol{\rho}_0}{\rho_X} \right) \right]^{\frac{1-\gamma}{\gamma}} \cdot \frac{V \cdot \boldsymbol{\mu}}{L^2} \cdot I_{CC}$$

I. Temiño, et al Nat. Commun. 11, 1–10 (2020).

CHEMICAL TAILORING/TUNING TRANSPORT PROPERTIES

Tamayo, et al, Adv. Electron. Mater., 2200293 (2022).

Sensitivity = 4 x $10^{10} \mu C Gy^{-1} cm^{-3}$

SYRMEP beamline @ ELETTRA synchrotron

Transfer on flexible large area substrates

Fratelli et al., Adv. Mater. Technol. **2023**, 2200769

Beam monitoring for medical application

DIRECT RADIATION DETECTION BY ORGANIC THIN FILMS: VALIDATION IN REAL-LIFE MEDICAL APPLICATION

L. Basiricò, et. al. Frontiers in Physics. 8, 11 (2020).

CONCLUSIONS

Fully organic, lightweight, printed radiation detectors based on high performance printed Organic Field Effect Transistors, can effectively and directly detect ionizing radiation with ultrahigh sensitivity

ACKNOWLEDGMENTS

People of Fraboni's Group working on this research @ Department of Physics and Astronomy – DIFA UNIBO

Prof. Beatrice Fraboni Dr. Andrea Ciavatti Dr. Ilaria Fratelli

https://site.unibo.it/semic onductor-physics/en

Columbia University CLUE LAB and Prof. loannis Kymissis

University of Kentucky

Prof. John Anthony

ELETTRA Sincrothron, Trieste Dr. Giuliana Tromba Dr. Diego Dreossi

ICMAB-CSIC Dr. Marta Mas-Torrent

Flexible organic lonizing Radiation dEtectors **INFN** (Italian Insitute for Nuclear Physics) (2019-2022)

RivELatOri innovativi per cure ADroterapiche

BACKUP SLIDES

ROLE OF PHOTOACTIVE TRAPS STATES:

Photocurrent Spectroscopy Optical Quenching

→ experimentally assess and identify the trap states which activate the photoconductive gain effect in organic thin film based devices

Fratelli et al., Adv. Mater. Technol. **2023**, 2200769

→ Simultanous irradiation with X-rays (W-target X-150 kVp) and visible photons

I. Kymissis et al., IEEE Trans. Electron Devices 57, 380-384 (2010).

electron traps in organic transistors, enhance the photoconductivity for photons in the range [350 – 480] nm

ROLE OF PHOTOACTIVE TRAPS STATES:

Photocurrent Spectroscopy Optical Quenching

→ experimentally assess and identify the trap states which activate the photoconductive gain effect in organic thin film based devices

Fratelli et al., Adv. Mater. Technol. **2023**, 2200769

→ Simultanous irradiation with X-rays (W-target X-150 kVp) and visible photons

I. Kymissis et al., IEEE Trans. Electron Devices 57, 380–384 (2010).

electron traps in organic transistors, enhance the photoconductivity for photons in the range [350 – 480] nm

LED (450 nm and 855 nm) have been selected because they correspond to two different and crucial position in the Photocurrent spectrum.

ROLE OF PHOTOACTIVE TRAPS STATES:

Photocurrent Spectroscopy Optical Quenching

855 nm light (below bandgap) have no effect on X-ray response.

450 nm light fills and saturates e- traps that become inactive \rightarrow completely **quench the PC gain** X-ray induced signal \rightarrow decrease of current \rightarrow X-rays facilitate a recombination between the electron already trapped and the hole already present/generated.

CONTROL OF ELECTRICALLY ACTIVE DEFECTS: INTERFACE STATES

Radiation Hardness (TIPS-pentacene)

transfer characteristic curves : before (black squares) and during (red circles) X-ray exposure at a dose rate of 54.8 mGy s-1 transfer characteristic in pristine state (black squares), after X-ray exposure with a total dose of 160 Gy (red dots) and after 24 h kept in dark (blue stars).

Radiation hardness under X-rays: organic thin film (TIPS- pentacene) - II

Four steps of 200Gy X-ray irradiation (35KV Mo tube). Total dose 800Gy Total irradiation dose for medical diagnostic detectors: 5-10 Gy/year

Recovery allowed only after the last step (100h in the dark)

Limit of Detection

Measured LoD: 5 μ Gy s⁻¹ Extracted: 0.8 μ Gy s⁻¹

Typical dose rate values presently used in medical diagnostics: 5.5 $\mu Gy \; s^{-1}$

standard radiographic examinations have average effective total doses in the range: 0.005–10 mGy

Mechanical flexibility

bending radius of 0.3 cm
→ Conformable to human body

• Decrease of about 50% after first bending

• Stability over 100 bending cycles.

KPFM on strained transistors: nanocrak formation

TIPS Pentacene

Mechanical flexibility

Printed organic detector architectures

OFETs advantages

- ✓ Multiparametric device
- \checkmark Vgs \rightarrow switch ON/OFF, allow to address the pixel
- \checkmark Vps \rightarrow tuning of the sensitivity

Role of photoactive traps states

Quenching of photoconductive gain by visible light

LED (450, 593 and 855 nm) have been selected because they correspond to three different and crucial position in the Photocurrent spectrum.

855 nm light (below bandgap) have no effect on X-ray response.

590 nm light only partially reduce the X-ray response (absorption of visible photons above band gap, correlated to a large conductivity increase and a decrease in the X-ray signal.to-noise ratio)

450 nm light completely quench the X-ray induced signal \rightarrow decrease of current \rightarrow X-rays facilitate a recombination between the electron already trapped and the hole already present/generated.

I. Kymissis et al., IEEE Trans. Electron Devices 57, 380-384 (2010).

electron traps in organic transistors, enhance the photoconductivity for photons in the range [350 - 480] nm

CONTROL STRATEGIES OF DEVICE PARAMETERS

DEPOSITION TECHNIQUE: PNEUMATIC NOZZLE PRINTING

Microcrystalline structure Very packed films Thickness = [100-200] nm Width = varies depending on the deposition parameters

GATE

Photoconductive Gain effect

ORGANIC SEMICONDUCTORS FOR IONIZING RADIATION DETECTION - ADVANTAGES

ORGANIC SEMICONDUCTORS FOR IONIZING RADIATION DETECTION - ADVANTAGES

FLEXIBLE ORGANIC RADIATION SENSORS

Sensitivity: 7x10⁶ μC/Gy cm² @ 0.2V >> than polyCZT or a-Se

Room temperature

Linear response (dosimetry)

I.Temino et al. Nature Comm. 11, 2136 (2020)

40