

X-ray Beam

High-Rate X-ray Spectrometers based on Monolithic SDDs Arrays

Giacomo Ticchi on behalf of RadLab Group

XDEP at SOLEIL Synchrotron – 6th Febraury 2024

X-ray Spectrometers for Synchrotron Applications

Motivation :

Develop a low-noise and versatile detector based on monolithic arrays of **Silicon Drift Detectors** for high-rate synchrotron applications (mainly XRF, XAFS, and XFM)

- Detector requirements:
- X-ray energy range: 0.2 keV 20 keV (Si detection region)
- Best resolution (~125 eV of FHWM Mn-Kα) at optimum shaping time and low rate, good resolution (≤ 200 eV) at short shaping time and high throughput (> 1 Mcps/ch.)
- Modular and scalable design, to easily increase sensitive area and adapt with different experiment configurations

ARDESIA-16: Monolithic SDD Matrix

16-channel detection system

- □ Thicker substrate (450 µm, 800 µm and 1000 µm) to extend energy detection range, with expected $\rho \ge 10 \text{ k}\Omega \cdot \text{cm}$
- **5** mm side for detector element

XDEP – Giacomo Ticchi

ARDESIA-16: Detection Module

- **5**00 μm thick **Molybdenum Mask (or Zirconium)** to prevent charge sharing phenomena
- □ Total collimated area is 324 mm²
- □ Hosting the **16 channel Monolithic SDD array** with all thicknesses
- □ Four custom-designed 4-channel CUBE Preamplifiers
- □ Preamplifier and Detectors are glued to an Alogen-free PCB
- □ Aluminum frame to anchor PCB and Mask

ARDESIA-16 Spectrometer

ARDESIA Spectrometer in Europe

• BM8 ARDESIA-4

XDEP – Giacomo Ticchi

PETRA III P06: High Count-Rate and XFM

XDEP – Giacomo Ticchi

ARDESIA-16 at P06 Beamline (PETRA, DESY, Hamburg)

High Count Rate Measurements by sweeping the synchrotron beam intensity

- Pure Manganese Sample
- Beam Energy = 15 keV
- Meas. time = 60 s
- Detector T = -35 °C
- **DANTE DPP** (XGLab)
- Peaking Time = 32 128 ns
- Flattop = 128 ns

XFM of a Soil

- Dwell time 10 ms
- □ 350 × 200 pixels
- **Xpress3 DPP** (Quantum Det.)

RGB image of the Cr contamination in soil.

Utica, G., et al. "ARDESIA-16: ... " Journal of Instrumentation 16.07 (2021): P07057.

ESRF ID16A: Count-Rate and Energy Resolution

Second version of ARDESIA-16 custom designed for ID16A (ESRF, Grenoble) to be coupled with two **FalconX8 DPPs** (XIA)

Sample: 10 nm thick square of **Nickel** with an area equal to 20 μ m × 20 μ m on a Si-substrate Energy of the Beam: 17 keV

ESRF ID16A: Gold Siemens Star

Au areal mass density (ng/mm²) Beam Energy: 33.5 keV Step Size: 10 nm Dwell Time: 15 ms Image Size: 1500 x 1501 pixels

ID16A Nano-Imaging beamline **High-Definition nano-XRF** Not achievable before, thanks to the combination of Ardesia-16 and FalconX8

ESRF ID16A: Biological Sample

Cryo-CLEM (optical clearing)

XDEP – Giacomo Ticchi

Synchrot

Current Development: ASCANIO

Designed for X-ray fluorescence microscopy (**XFM**) imaging in synchrotron beamlines

Backscattering geometry* with tilted SDDs

4 channels monolithic array

- **5 mm** side for each pixel
- Thicknesses: **450 μm 800 μm 1 mm**

[*] D. P. Siddons, et al. Maia X-ray Microprobe Detector Array System. 22nd International Congress on X-Ray Optics and Microanalysis. Journal of Physics: Conference Series **499** (2014) 012001, doi:10.1088/1742-6596/499/1/012001

XDEP – Giacomo Ticchi

Current Development: ASCANIO

XDEP – Giacomo Ticchi

Solid Angle Analysis

Solid Angle Analysis

Advantage of a Tilted Layout

 $Ω_{min} = 43\% Ω_{max}$

 $Ω_{min} = 90\% Ω_{max}$

XDEP – Giacomo Ticchi

Advantage of a Tilted Layout

Uniform fluorescence light distribution among channels

$$Max/min = \frac{\Omega max}{\Omega min} \rightarrow 1$$

25° tilted layout

 $Ω_{min} = 90\% Ω_{max}$

XDEP – Giacomo Ticchi

Output Count-Rate

$$Max/min = \frac{\Omega max}{\Omega min}$$

$$OCR = \varphi_{max} \sum_{i=1}^{16} \frac{\Omega_i}{\Omega_{max}}$$
 [Mcps]

XDEP – Giacomo Ticchi

[*] Scoullar P A, McLean C C and Evans R J 2011 Real time pulse pile-up recovery in a high throughput digital pulse processor AIP Conference Proceedings vol 1412 (American Institute of Physics) pp 270–277.

Output Count-Rate

Assumption: largest solid angle channels operate at 2 Mcps*

[*] Scoullar P A, McLean C C and Evans R J 2011 Real time pulse pile-up recovery in a high throughput digital pulse processor AIP Conference Proceedings vol 1412 (American Institute of Physics) pp 270–277.

- 800 µm Thickness
- Individually Tested
- Uncollimated

XDEP – Giacomo Ticchi

Spectroscopy with ⁵⁵Fe Source

XDEP – Giacomo Ticchi

Spectroscopy Performance: ⁵⁵Fe Source

Rendered Implementation: PETRA III P06

Future Developments

XDEP at SOLEIL Synchrotron – 6th Febraury 2024

ARDESIA-16

- 4 x 4 Matrix
- 5 mm Pixel Pitch

ARDESIA-64

- 8 x 8 Matrix
- 2.5 mm Pixel Pitch
- 1 mm Thick
- Characterisation stage

Output Count-Rate > 70 Mcps

Enhanced Backscattering Geometry

Monolithic ASCANIO

• 16-Channel

- 1 mm Thick
- Pixel with Trapezoidal-like Shape
- 2 mm Hole Diameter in the Middle
- Inner Pixels: 11.7 mm²
- Outer Pixels: 25.1 mm²
- Characterisation stage

XDEP – Giacomo Ticchi

Sample Distance [mm]	Solid Angle [sr]	Max/Min Ratio
4	2.42	1.50
5	2.27	1.22
6	2.09	1.03
7	1.89	1.12
8	1.69	1.25
9	1.52	1.38
10	1.36	1.49
11	1.22	1.59
12	1.10	1.68

Thank you for your kind attention!

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

XDEP – Giacomo Ticchi

First Detector Unit Prototype

- 450 μ m thick SDD
- 0.5 mm thick Mo collimator directly glued on the SDD

- Uncollimated active area = 100 mm²
- Collimated active area = 81 mm²
- Total ASCANIO collimated active area = 324 mm²