Developments of Micromegas detectors for BabyIAXO

Authors: Ana Quintana García (ana.quintanagarcia@cea.fr) on behalf of IAXO Micromegas detector group: ICC (Spain), IRFU (France), Unizar (Spain)

X-DEP – X-ray DEtector Technologies for Physics, 05-feb-2024

Content

Micromegas detectors	
 Microbulk Micromegas detector 	
BabyIAXO Microbulk	
 Detector shielding 	
Electronic readout	
BabyIAXO micromegas prototypes	
 IAXO-D0 at the University of Zaragoza 	
 IAXO-D1-LSC at Canfrant Underground Laboratory 	
A LAVO D1 Saclay at CEA Saclay	

Ana Quintana García: ana.quintanagarcia@cea.fr

BabyIAXO experiment

BabyIAXO detector requirements

- High detection efficiency in the RoI: 1-10 keV.
- Very low background (<10 keV): **10**⁻⁷ c/keV/cm²/s.
 - + <u>Radiopurity</u>: inner components.
 - + <u>Passive shielding</u>: lead shell.
 - + Active shielding: muon vetos (PMT scintillators).
 - + <u>Event discrimination strategies</u>: G4 simulation and prototype measurments.

IAXO is based on the experience acquired during the CAST experiment

Micromegas detectors for BabyIAXO – 05-feb-24

Background evolution in CAST

Ana Quintana García: ana.guintanagarcia@cea.fr

Microbulk Micromegas detectors

Micromegas:

- <u>Conversion region</u>: X-rays ionize the gas creating electrons that drift towards the amplification region.
- <u>Amplification region</u>: electrons pass through mesh holes due to a high field and are amplified. Electron-ion movement induce signals in both mesh & strips.
- Gas mixture: Ar + Isobutane (Xe/Ne + ISO)

Microbulk:

- Intrinsic radiopurity.
- Very homogeneous amplification gap, uniform gain.
- Good energy resolution @5.9keV (⁵⁵Fe peak).
- Pixelized readout gives topological information.
- High power to discriminate X-rays signal from background events.

Ana Quintana García: ana.quintanagarcia@cea.fr

BabyIAXO Microbulk detector

- <u>TPC</u> (Time projection chamber) made of copper with 3 cm drift.
- <u>Microbulk readout</u> with 50 μm of amplification region.
 - 120 x 120 strips
 - Pitch = 0.5 mm
 - 6 x 6 cm²
- <u>Mylar window</u>: high transmission in the ROI (1-10 keV).

Copper Field cage Copper substrate **3 cm** $\theta\theta$ $\theta\theta$

Micromegas detectors for BabyIAXO – 05-feb-24

Ana Quintana García: ana.quintanagarcia@cea.fr

Detector shielding

Passive shielding:

- 20 cm of lead (Z = 82).
- $\sim 4\pi$ coverage (weak spot on the pipe hole).
- Blocks eviromental/cosmic gamma radiation.
- Chamber, pipe, ... made of radiopure copper to block possible lead radiation.

- Large plastic scintillator coupled to low-noise photomultipliers (PMTs)
- Shields from cosmic rays: especially the muon induce events.
- $\sim 4\pi$ coverage ($\sim 100\%$ geometrical efficiency).

Ana Quintana García: ana.quintanagarcia@cea.fr

Electronic readout (present)

- BabyIAXO Micromegas electronics based on the a AGET chip (ASIC for Generic Electronic system for TPCs)
- The 64-channel ASIC performs the amplification, detection and analog storage of the shaped detector signal before its digitization by an external 12-bit ADC
- Large flexibility in sampling frequency (100 MHz max.)
- Peaking time (16 values from 50 ns to 1 /ls)
- Gain (4 ranges from 120 fC to 10 pC per channel)
- Resolution < 850 e- (Gain: 120 fC; Peaking Time: 200 ns; Cdetector < 30 pF)

FEMINOS: digital board to read out a front-end card equipped with AGET chips

AGET: S. Anvar et al., AGET, the get front-end asic, for the readout of the time projection chambers used in nuclear physic experiments, IEEE Nucl. Sci. Symp. Conf. Rec. (2011) FEMINOS: Anvar et al., "The readout electronics and data acquisition system of the MINOS vertex tracker," 2014 19th IEEE-NPSS Real Time Conference, Nara, Japan, 2014, pp. 1-5, doi: 10.1109/RTC.2014.7097530.

Ana Quintana García: ana.quintanagarcia@cea.fr

Electronic readout (future)

- Readout noise as low as possible for low energy threshold •
- New architecture of the existing system in order to improve the electronic noise: approach the front end cards (FEC) to • the detector and improve the radiopurity of the components
- Optimization of the FEC locations to study the electronics effect on the background of the detector •

In construction now To be tested in 2024

Ana Quintana García: ana.quintanagarcia@cea.fr

IAXO-DO at the University of Zaragoza

Ana Quintana García: ana.quintanagarcia@cea.fr

Goal of IAXO-D0 measurements:

- Study background discrimination techniques.
- Effect of a multi-layer veto system to tag cosmogenic neutrons (in addition to muons).

Set-up:

- At surface level at the University of Zaragoza.
- Detector: microbulk from CAST using Xe(48,85%)-Ne(48,85%)-ISO(2,3%) gas mixture.
- ***** Veto system: 57 panels with a 4π coverage.
- Electronic readout: 4 AGET ASICs for micromegas and vetoes (veto readout trigger by micromegas).

Background discrimination (data processing with REST-for-physics*):

- Micromegas data: energy and topological information.
- Veto system: multiplicity and energy.

Results:

♦ (8.56 ± 1.22) × 10^{-7} counts keV⁻¹ cm⁻² s⁻¹ (~80% of software efficiency @6 keV).

*REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response, <u>Comput. Phys. Commun. 273 (2022) 108281 [2109.05863]</u>

IAXO-DO at the University of Zaragoza

Ana Quintana García: ana.quintanagarcia@cea.fr

Goal of IAXO-D0 measurements:

- Study background discrimination techniques.
- Effect of a multi-layer veto system to tag cosmogenic neutrons (in addition to muons).

Set-up:

- ✤ At surface level at the University of Zaragoza.
- Detector: microbulk from CAST using Xe(48,85%)-Ne(48,85%)-ISO(2,3%) gas mixture.
- Veto system: 57 panels with a 4π coverage.
- Electronic readout: 4 AGET ASICs for micromegas and vetoes (veto readout trigger by micromegas).

Background discrimination (data processing with REST-for-physics):

- Micromegas data: energy and topological information.
- Veto system: multiplicity and energy.

Results:

- (8.56 \pm 1.22) \times 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹ (~80% of software efficiency).
- Lowest surface level background with this type of detector.

IAXO-D1 at LSC (Canfranc Underground Laboratory)

Goal of IAXO-D1-LSC prototype:

- Study the potential of this technology in "absence" of cosmics.
- Test of different gas mixtures: Ar-ISO and Xe-Ne-ISO.

Set-up:

- ✤ At the Underground Laboratory of Canfranc (Spanish Pyrenees), were the cosmic muon is a factor 10⁴ less.
- Detector: new microbulk (IAXO-D1) with 20 cm thick lead shielding.
- Electronic readout: 4 AGET chips. Connected through a flat cable.

Background data taking over view:

- Xe-Ne-ISO mixture recirculating (January May 2023).
- ✤ Ar-ISO(1%) on open loop (May 2023 ongoing).

IAXO-D1 at LSC (Canfranc Underground Laboratory)

Goal of IAXO-D1-LSC prototype:

- Study the potential of this technology in "absence" of cosmics.
- Test of different gas mixtures: Ar-ISO and Xe-Ne-ISO.

Set-up:

- ✤ At the Underground Laboratory of Canfranc (Spanish Pyrenees), cosmic muon flux reduced by factor ~60000.
- Detector: new microbulk (IAXO-D1) with 20 cm thick lead shielding.
- Electronic readout: 4 AGET chips. Connected through a flat cable.

Background data taking over view:

- ✤ Xe-Ne-ISO mixture recirculating the gas (January May 2023).
 - $\sim 5-6 \times 10^{-7}$ counts keV⁻¹ cm⁻² s⁻¹ (~80% of software eff.)
- ✤ Ar-ISO(1%) on open loop (May 2023 ongoing).
 - $\sim 2 \times 10^{-7}$ counts keV⁻¹ cm⁻² s⁻¹ (~80% of software eff.)

Ana Quintana García: ana.quintanagarcia@cea.fr

IAXO-D1 at CEA-Saclay

Goal of IAXO-D1-Saclay prototype:

- Optimization of background rejection techniques.
- Study the evolution of the background with the different shieldings.

Set-up:

- ✤ At surface level at CEA-Saclay.
- Detector: new microbulk (IAXO-D1) without any shielding.
- Electronic readout: 4 AGET chips. Connected using a flat cable.

Background data taking:

✤ First preliminary measurement without any shielding and non radiopure window: ~ 2 × 10⁻⁵ counts keV⁻¹ cm⁻² s⁻¹ (compatible with firsts CAST background).

Ana Quintana García: ana.quintanagarcia@cea.fr

IAXO-D1 at CEA-Saclay

Goal of IAXO-D1-Saclay prototype:

- Optimization of background rejection techniques.
- Study the evolution of the background with the different shieldings.

Set-up:

- ✤ At surface level at CEA-Saclay.
- Detector: new microbulk (IAXO-D1) without any shielding.
- Electronic readout: 4 AGET chips. Connected using a flat cable.

Background data taking:

 First preliminary measurement without any shielding and non radiopure window: ~ 2 × 10⁻⁵ counts keV⁻¹ cm⁻² s⁻¹ (compatible with firsts CAST background).

Ana Quintana García: ana.quintanagarcia@cea.fr

Micromegas detectors for BabyIAXO – 05-feb-24

Summary

Summary:

- Axions searches with helioscopes requires ultra-low background x-ray detectors (10⁻⁷ counts/(s keV cm²)) -> Microbulk Micromegas
- There are different set-up to test this technology at LSC, the University of Zaragoza and CEA-Saclay, to explore the necessary techniques to reach the required background levels.

Prospects and future improvements:

- Shielding and veto configuration optimization.
- Gas optimization with Xe (or Ar).
- Comparison between background data and simulations.
- Radiopure electronics to be tested.
- Measurements at DESY underground lab (location of BabyIAXO) in 2024-25.

Xe: (8.56 \pm 1.22) \times 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹

Xe: $(5.41 \pm 0.94) \times 10^{-7} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ Ar: $(2.42 \pm 0.99) \times 10^{-7} \text{ c keV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$

Thanks for your attention

Ana Quintana García: ana.quintanagarcia@cea.fr