Integrating-pixel detectors development at SPring-8 and SACLA

Fabienne Orsini, on behalf of the Detector Team RIKEN SPring-8 Center

With materials from T. Ishikawa (SPring-8/SACLA), T. Yabuuchi (SACLA), T. Hatsui (Detectors)

XDEP workshop 6th February 2024

SR light sources and XFEL in JAPAN

FY2024: Start of operation

SPring-8 and SACLA

In HYOGO prefecture

- ~40 km from HIMEJI
- ~130 km from OSAKA
- ~600 km from TOKYO

SACLA: Free Electron Laser 8 GeV for hard X-rays 0.8 GeV for soft X-rays Injector for SPring-8 SPring-8: Japan's Flagship Synchrotron Radiation Facility 8 GeV

General Features of SPring-8

Construction: 1991-1997 Operation: 1997- ... 8 GeV, Circumference: 1436 m

- Synchrotron radiation ranging from the soft X-ray (photon energy 300 eV) to hard X-ray region (300 keV) with the highest brilliance in the world. High-energy gamma rays (1.5-2.9 GeV) and infrared radiation are also available
- Many undulators (up to 38) can be installed and they can be used independently
- Advanced experimental facilities (medium-length beamline Facility, 1 km-long Beamline Facility)

SPring-8 beamlines

Number of beamlines in 2023: 57 (62 possible)

0/	LEA Addition Optimic Charge Agency DELEAD
	Medical and Imaging I BL20B2 ★
	Medical and Imaging II BL20XU 🛨
	X-ray Diffraction and Scattering II BL19B2 ★
	RIKEN SR Physics BL19LXU +
	RIKEN Coherent Soft X-ray Spectroscopy BL17SU +
	SUNBEAM BM BL16B2
	(SUNBEAM Consortium)
	SUNBEAM ID BL16XU
	(SUNBEAM Consortium)
22 21	RIKEN Materials Science III BL15XU
20	XAFS II BL14B2 ★
O 19	QST Quantum Dynamics II BL14B1
`	(National Institutes for Quantum Science and Technology)
	X-ray Diffraction and Scattering I BL13XU
Man	NSRRC BM BL12B2
map	(National Synchrotron Radiation Research Center)
s · 62	14 NSRRC ID BL12XU
	13 (National Synchrotron Radiation Research Center)
: 34 (12 (National Institutes for Quantum Science and Technology)
: 4(High Pressure Research BL10XU
: 24 (
	Hyodo BM (Hyodo Prefecture) BL08B2
7 14	High Energy Inelastic Scattering BL08W
6	
4	
	R&D-ID I BL05XU ♦
	High Energy X-ray Diffraction BL04B2 *
	High Temperature and High Pressure Research BL04B1 ★
	Advanced Softmaterial BL03XU
-	(Advanced Softmaterial Beamline Consortium)
	Powder Diffraction BL02B2 ★
	Single Crystal Structure Analysis BL02B1 ★
	XAFS I BL01B1 🛨
	XDEP Workshop / F. Orsini

JAEA Actinide Science I (Japan Marris Engral Aspect) BI 22XII

RIKEN Beamline (16)

Mainly used for RIKEN's own research activities with partial availability for public use

🖈 Public Beamline (26)

80% of operation time provided for the public use (20% for coordination)

• Contract Beamline (15)

Constructed by industrial, academic or governmental organizations in Japan and abroad. Contract beamlines are used by themselves.

SPring.

SACLA

SACLA beamlines

XDEP Workshop / F. Orsini

SPring 8

SR Science at SPring-8 / SACLA

Various fields of thematic in fundamental and applied research

Material science	Metal material Non-metal material Magnetic materials Semiconductors & Electronics Crystal structure & Molecular structure
Life Science / Medicine	Life science Drug discovery Medecine and Health Care
Environmental science	Living Environment Energy
Earth Science / Astronomy	Earth materials, meteorite's structure and cosmic dust
Industrial use	Material evaluation in the industrial world

SUSTAINABLE GOALS

In 2022, a booklet has been published illustrating latest press-release of SPring-8 / SACLA achievements in relation to Sustainable Development Goals

+ Nuclear physics

Specific innovative instrumentation and services are also developed:

accelerator components, optics, **DETECTORS**, sample environment, automation, data center, etc

SPring.

SACLA

Detectors development: from MPCCD to CITIUS

Silicon Integrating-pixel detectors

XDEP Workshop / F. Orsini

SPring.8

SACLA

[Hatsui IFDEPS2021]

CITIUS performances

[Hatsui ULiTiMA2023]

Proto 2.2M installed on BL29XU

CITIUS architecture choice

Fully exploit CMOS image sensor process/circuitries

Chip level

On-chip ADC

- Benchmark on performance / power dissipation (techno of 2014)
- Vertical signal lines
 - o Massively parallel

Pixel

Sensor: Silicon

- Global shutter operation
- Multi-gain pixel circuitry without switching
 - o Similar to lateral overflow scheme
 - No charge amplifier
 - \circ $\,$ Gain selection at the periphery

Radiation hard pixel design

Power consumption: 3.6 μ W/pixel

SPring-8 II CDR with updated values
T. Hatsui, presented at iWorid (June. 2014)

[Hatsui PIXEL2022]

CITIUS: demonstrated performances

(not exhaustive)

Frame Rate of 17.4 kHz demonstrated in XPCS experiments

0.805 msec **BL29XU EH3 in July 2021** 40 Mph/s/pixel at 8 keV 3.5 100 XPCS @ 8 keV Photon flux: 2×10⁹ ph/s 200 Direct beam was also detected 300 400 **CITIUS:** Pixel Number: 280 kpixels 500 Frame rate: **17.4 kframes/s** 600 Frame Cycle: 57.5 µs 0.5 700 Sample: 0.0 Silica (100 nm ϕ , 28.8 wt%) in MEK + PEI + MeOH (66.8, 3.9, 200 0 0.5 wt%) in 0.5 mm capillary

[Hatsui ULiTiMA2023]

CITIUS: demonstrated performances

(not exhaustive)

Count rate capability and linearity

BL29XU

E = 10 keV

Slit to CITIUS: 15 m / Slit size: 20×20 µm

Photon Energy = 10 keV

 \rightarrow 8 to 9 order of magnitude observed inside a single chip

945 Mcps/pixel

Linear response observed up to ~ 1 Gcps/pixel

Slit pattern observed at the extremity of the beam pipe

[Hatsui ULiTiMA2023]

CITIUS 20.2M for SACLA: deployment status

CITIUS 20.2M to be integrated to SACLA

- 20.2 Mpixel @ 60 frames/s
- Total 1.5 kW/camera head
- About 30,000 components/system
 - 72 sensors (good yield demonstrated)
 - composed of 8 subsystems
 - o 2.52 Mpixel/subsystem

General layout of CITIUS 20.2M

[Hatsui ULiTiMA2023]

SPring.

Sensors sub-system under calibration

Dedicated Data Acquisition System

- Feasibility study with 580k and 2.52 Mpixels are in progress
- Data flow management is under study ('data deluge')

Schedule

- Assembly and testing of the 1st subsystem were completed in July 2023
- User operation in 2024

Mechanical Model under thermal testing

Summary and future plans

Detectors plan

- CITIUS camera variants are under assembly and are planned to be deployed progressively for various experiments in SPring-8 and SACLA (e.g. SFX on XFEL, WAXS, ptychography, etc)
- CITIUS is under discussion for several beamline upgrades
- Other 'commercial' detectors are also under evaluation tests (with high-Z material for the sensor part)

https://new.spring8.or.jp/

SPring-8-II will be a 6 GeV storage ring-based light source with 50 pmrad horizontal emittance

 After the SPring-8-II will come SACLA-II, with 100 times more rep-rate than the present SACLA

February 6th, 2024

SPring.

SACLA

Thank you for your attention