Excellence Cluster Origins Technical University of Munich

ComPol - A Compton polarimeter in a Nanosat

Author: Jonas Schlegel^{1,2}

Marco Carminati⁴, Ion Cojocari³, Carlo Fiorini⁴, Peter Hindenberger^{1,2}, Pietro King⁴, Philippe Laurent³, Peter Lechner⁵, Martin Losekamm^{1,2}, Matthias Meier^{1,2}, Susanne Mertens^{1,2}, Sebastian Rückerl^{1,2}, Lorenzo Toscano⁴, Michael Willers^{1,2}

- ¹Excellence Cluster ORIGINS, Garching, Germany - ²Technical University of Munich (TUM), Munich, Germany -³Alternative Energies and Atomic Energy Commission (CEA), Paris, France — ⁴Polytechnic University of Milan (Polimi), Milan, Italy — ⁵Semiconductor Laboratory of the Max Planck Society (HLL), Munich, Germany

Scientific motivation

What will be observed?

Hard X-rays from the black hole binary system Cygnus X-1 in two measurement modes.

Spectroscopy (20 keV - 2 MeV)

Project schedule In-Orbit Verification Light Mounted on the outside of the ISS

- Mission duration: > 6 months
- summer 2024 Launch date:

Open questions:

 Geometrical difference between the main states?

Approach: new Continuous observation

What causes state transitions?

Cgynus X-1 spectra in the High Soft State (HSS) and the Low Hard State (LHS) Paredes, Josep M. et al. "Gamma Rays from Compact Binary Systems." AIP Conference Proceedings (2008)

State classification of Cygnus X-1 for all known measurements from 2004 until 2018. The data shows that Cygnus X-1 was mainly in the two main states LHS/HSS (blue/red), and sometimes in an intermediate state (green) or it could not be classified

F. Cangemi et al., "High energy spectral study of the black hole Cygnus X-1 with INTEGRAL", SF2A, 2018

Explore hardly studied energy range

Developed for KATRIN/TRISTAN

(Neutrino mass experiment)

Excellent energy resolution

Polarimetry

(20 keV - 300 keV)

Approach:

Open questions:

- How is the geometrical structure?
- X-ray production mechanism?

- Mission goals:
 - Demonstrate functionality
 - Long term operation in LEO
 - Evaluate data acquisition routines
 - Background studies

Nanosatellite mission

- 3 Unit CubeSat (10x10x34 cm³)
- Mission duration: > 12 months
- > 2024 Launch date:
- Mission goals:
- Continuous, long-term pointing at Cygnus X-1
- Spectroscopy
- Polarimetry

Position calibration

Measurement

newr

- Calorimeter imaging in a 13x13 grid
- Using an ²⁴¹Am (60keV) source
- Utilize a copper collimator with a 1mm aperture

Calorimeter

- Scintillating crystal: CeBr₃
- Silicon photomultiplier matrix on the backside

 Record coordinate data with light distributions for training a neural net

Motivation

- Reconstruct event positions with high precision
- Assess the distribution of the azimuthal angle for detailed analysis
- Compute the degree of polarization to determine emission mechanism of Cygnus X-1

First results

- Multilayer Perceptron with three hidden layers
- Achieved position resolution of 3.6 mm
- Enhanced predictive accuracy

at the center (2.5 mm)

Experimental Setup for Calibration

-0.2 0.0 0.4 0.6 Scaled X Coordinate 0.4 0.6 Scaled X Coordinate 0.8 0.2 0.6 0.0 0.2 0.8 1.0 **Model Predictions** Averaged Input Values for specific Coordinate for specific Coordinate

This research is supported by the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2094-390783311