

TRISTAN Detector Upgrade for the KATRIN Experiment

MAX PLANCK SEMICONDUCTOR LABORATORY

C. Forstner^{1,2} (christian.forstner@tum.de), M. Carminati^{3,4}, F. Edzards^{1,2}, C. Fiorini^{3,4}, P. Lechner⁵, S. Mertens^{1,2}, D. Siegmann^{1,2}, D. Spreng^{1,2}, M. Steidl⁶, K. Urban^{1,2} for the KATRIN Collaboration

Technical University of Munich, TUM School of Natural Sciences, Department of Physics, James-Franck-Str. 1, 85748 Garching, Germany ² Max Planck Institute for Physics, Boltzmannstr. 8, 85748 Garching, Germany ³ Polytechnic University of Milan, Department of Electronics, Information Technology, and Bioengineering, Via C. Golgi 40, 20133 Milan, Italy ⁴ INFN, Milan Division, Via Giovanni Celoria 16, 20133 Milan, Italy ⁵ Semiconductor Laboratory of the Max Planck Society, Isarauenweg 1, 85748 Garching, Germany ⁶ Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Search for Sterile Neutrinos

- Sterile neutrinos in keV-mass range: Dark Matter candidate
- Use KATRIN source and beamline to search for keV-scale sterile neutrinos in single β -decay
- New detector required for high-resolution β-spectroscopy at high count rate

⇒ TRISTAN Detector

GLAB

Silicon Drift Detector

- Low anode capacity (~170 fF)
- High rate capability (100 kcps/px)
- Excellent energy resolution (300 eV FWHM for 20 keV electrons)

\Rightarrow TRISTAN Detector is a multi-pixel Silicon Drift Detector (SDD)

THE UNIVERSITY

POLITECNICO

MILANO 1863

of NORTH CAROLINA at CHAPEL HILL MAX PLANCK INSTITUTE FOR PHYSICS

P. Lechner *et al.*, 1996, Nucl. Instrum. Methods Phys. Res. A, 377

