Next-generation Materials-Data Curation and Processing Methods for Machine-Learning Applications

Jacqueline M. Cole

Cavendish Laboratory, University of Cambridge, UK

ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, UK

The Evolution of Structural Science

Single Compound STRUCTURE; PROPERTY

Series of Compounds

STRUCTURE versus PROPERTY

versus TIME

Systems Approach

STRUCTURE & PROPERTY SPACE

(& versus TIME)

Data Sources Chemical Space

Material Properties

Pipelines for Data-driven Science

Input: Processed Data

• Create software tools for auto-generating materials databases

• Train machine-learning algorithms with the data to predict materials

• Realise data-driven materials discovery to aid the energy sector

• Realise data-driven materials discovery to aid the energy sector

ChemDataExtractor

Input

www.chemdataextractor2.org

Output

Applications

Optical Materials

Battery Materials

Thermoelectric Materials

Superconducting Materials

Magnetocaloric Materials

Materials for Engineering

Semiconducting (Band Gap) Materials

Photocatalyts and Co-catalysts for Water Splitting

Powered by 💦 ChemDataExtractor

Magnetism

Reconstruct Phase Diagrams

La_{1-x}Sr_xMnO₃ series

Holistic 'cartoon' that has built up over the years Reconstructed using

Superconductivity

ML predictions of Tc: LnFeAsO_{1-x}F_x

ML prediction: Random forest regression with K-best selection (shows Tc is dependent on ionic radii, atomic number, work function of Ln)

Phase diagram of BaFe_{2-x}Ni_xAs₂

Materials Discovery at the Molecular Scale

and some stranger and the

Extract Data

Enrich data

Predict

Validate

Photovoltaics Device Databases Auto-generated via

Manufacturing applications

Device metrological attributes

Dye Sensitized Solar Cell Database	Perovskite Solar Cell Database
Solar simulator (irradiance)	Solar simulator (irradiance)
Substrate	Substrate
Active area	Active area
Semiconductor	Counter electrode
Semiconductor thickness	
Dye loading	

E. J. Beard, J. M. Cole, *Scientific Data* 9, 329 (2022).

Redox couple

Thermoelectrics

Trend-setting data

Battery Device Data

batterydataextracto from batterydataex

t Documene

loc import Docume

import batterydataext from batterydataextre

Huang and Cole, *Chemical Science* 13 (2022) 11487-11495. Image Credit: Shu Huang and Nan Tian, and embedded image by rawpixel.com on Freepik

Distinguishing device materials as anode, cathode, or electrolyte

S. Huang, J. M. Cole, J. Chem. Inf. Model. 62 (2022) 6365-6377

A BERT Language Model

Distinguishing device materials as anode, cathode, or electrolyte

S. Huang, J. M. Cole, J. Chem. Inf. Model. 62 (2022) 6365-6377

Pipelines for Data-driven Science

Input: Reduced Data

Collaboration with SCD and ISIS at Rutherford Appleton Laboratory

Jung, Jung, Cole, Chem. Sci. (2023) 4, 3600–3609

- Training Data for CNN:
- Experimental infra-red spectra dataset of 30,000 unique compounds
- **Technical validation:** model can identify 37 functional groups of a molecule

CNN architecture trained on theoretically-generated X-ray absorption spectra

Penfold et al, Digital Discovery (2023) 2, 1461.

Grey line = CNN Prediction from experimental spectra (but with CNN trained on theoretical data)

Black line = result from standard exptal approach to data analysis

Penfold et al, Digital Discovery (2023) 2, 1461

Multi-modal Data

For ML training and for crossing materials-characterisation techniques

Yildirim, Washington & Cole (2020)

Image to RDF to SANS

Sheep spine collagen image

Conclusions

- Pipelines to curate high-quality databases on structure-property relationships
- Al architectures for auto-processing reduced data to afford structure
- Data analysis as we know it will become fully governed by AI
- The future data science?
 - will involve synonymous data scientists and ML experts
 - will employ multi-modal data sources as standard
 - will embrace language models for mainstream operations
 - may open or private ("data are the new oil") data quality is becoming a premium

What Facebook think...

The future is private.

And finally...

C

https://www.chemdatawriter.org

ChemDataWriter Home About Reader Finder Retriever Summariser Paraphraser Generator Documentation

ChemDataWriter

ChemDataWriter is a transformer-based toolkit for auto-generating books that summarise research

Learn more

Search, read, and retrieve

Summarise and paraphrase

Auto-generate research books

Source Code

Documentation

Explore

Explore

ChemDataWriter

Auto-authored book

Fully-sectioned Fully-indexed Fully-referenced

Output

e.g. 120 page book that reviews battery research

Input

e.g. 152 papers on battery research

Acknowledgements

All the synthetic and materials characterisation chemists on the Advanced Energy Materials paper Ganesh Sivaraman, Alvaro Vazquez-Mayaoitia, Venkat Vishwanath, Argonne National Laboratory. Chris Cooper, Ed Beard, Matt Swain, Ed Beard, Shu Huang, Callum Court, Taketomo Isazawa, and all my research group @ Cambridge

ISIS Neutron & Muon Source

ImageDataExtractor

References:

Data-driven materials discovery:

Cole et al, *Adv. Ener. Mat* (2019) 9, 1802820 Cole, Acc. Chem. Res. 2020, 53, 3, 599–610 Databases:

Beard, Cole, *Sci. Data* (2022) 9, 329 (PV) Beard et al, *Sci. Data* (2019) 6, 307 (UV/vis) Huang, Cole, *Sci Data* (2020) 7, 260 (Battery) Huang, Cole, J. Chem. Inf. Model. (2022) 62 (2022) 6365-6377 (BatteryBERT)

Text mining:

Swain, Cole, J. Chem. Inf. Model (2016)

ChemSchematicResolver $a_A \implies B$ ReactionDataExtractor

