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Thin film

X-ray and neutron reflectivity measurements
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OUT:
Reflected beam intensity for each angle

IN:
X-ray beam at certain discrete angles

Shape of reflectivity curve provides 
information about thin film properties

X-ray/
neutrons

Substrate

𝑘𝑖𝑛 𝑘𝑜𝑢𝑡

Ԧ𝑞 = 𝑘𝑜𝑢𝑡 − 𝑘𝑖𝑛

Alexander Hinderhofer

Greco et al., J. Appl. Cryst. 55, 362 (2022)



Characterizing thin film samples
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Scattering:
FT with phase loss

Measured reflectivity curves 𝑅 𝑞; 𝜽

• SLD profile 𝜌 𝑧; 𝜽 is parameterized by a set of film properties 𝜽

• Reflectivity 𝑅 𝑞; 𝜽 can be simulated with 𝜌 𝑧; 𝜽 via recursive algorithms (but not uniquely!)

• Usual solution is an iterative fitting algorithm Iterative fitting is slow and strongly depends on human expertise!
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Substrate

Thin film

Inverse FT does 
not work!

Kiessig oscillations
(thickness)

TR edge
(SLD)

Neural Net
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Using neural networks for “fitting”
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Build a neural network that takes reflectivity curves as input
and yields the correct film properties as output

Neural net

Non-linear regression

Film parameters 𝜽
Output

Thickness

Density

Roughness

Reflectivity data 𝑅𝑖 𝑞𝑖 of thin film

Input

Thin film

Substrate

𝑛 reflectivity values

𝑓 𝑹;𝒘 𝜽𝑹
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Sample model: thin film layer on Si/SiOx
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Si

Thin film

Thickness
Roughness
SLD

Roughness
SLD

Air

20 – 1000 Å
0 – 40 Å
1 – 14 10-6Å-2

1 Å
20.07+i0.46 10-6Å-2

SiOx
Thickness
Roughness
SLD

10 Å
2.5 Å
17.77+i0.40 10-6Å-2

= open = fixed

SLD 0 Å-2

Thin film model for training: Generate random parameter sets 
and simulate curves
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Fitting real-time XRR of film growth
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o Tested on 5 real-time datasets of film growth:
3 x DIP, 1 x CuPc, 1 x 6T (370 curves)

o Result obtained less than 10ms/curve

o Results compared with GenX fits “by hand”

o Output was used to simulate “red” curve

o Results are good!

Greco et al., J. Appl. Cryst., 52, 1342 (2019)
Greco et al., Mach. Learn.: Sci. Technol. 2, 045003 (2021) 
Greco et al., J. Appl. Cryst. 55, 362 (2022)

DIP

SiOx

Si

Thickness Roughness SLD

Average relative error 11% 18% 8%
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Simulated vs. experimental data
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Systematic 
deviations

DIP on Si/SiOx @ 130°C (from S. Kowarik)

• Performance on simulation is much better 
than on experimental data

• Reason are experimental deviations from 
theoretical model, e.g.

Alignment

 Slit function

 Instrument noise

Wrong film model

…

Need to include some kind of noise 
to the training data!

Alexander Hinderhofer

Greco et al., J. Appl. Cryst. 55, 362 (2022)



What type of noise should be added?
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Poisson noise (e.g. low SNR) Uniform noise

Scales with intensity ~
1

𝐼
Each point multiplied with a random 

value between 1 − 𝑛 and 1 + 𝑛
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How much noise should be added?
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Fitting performance vs training noise

Best performance at 𝑛 = 0.3-0.35!

• Train 11 different neural networks 
with increasing noise on training data

• By applying noise,  performance is 
increased by a factor of up to 3!

Loss:

• Mean squared error across all test 
data and all parameters 

• Low loss means high accuracy

Alexander Hinderhofer
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Open Reflectivity Data
• There are ~15-20 publications on ML analysis of reflectivity data

• Training was always done on simulated data

• ML Model evaluation was mostly done on either simulated data or very few 
reflectivity curves the authors had available.

=> Model evaluation without large labelled dataset is difficult

A. Hinderhofer, A. Greco, V. Starostin, V. Munteanu, L. Pithan, A. Gerlach, and F. Schreiber. 
Machine learning for scattering data: strategies, perspectives, and applications to surface scattering
J. Appl. Cryst. 56 (2023) 3
https://doi.org/10.5281/zenodo.6497438

XRR/NR
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A. Hinderhofer, A. Greco, V. Starostin, V. Munteanu, L. Pithan, A. Gerlach, and F. Schreiber. 
Machine learning for scattering data: strategies, perspectives, and applications to surface scattering
J. Appl. Cryst. 56 (2023) 3

https://doi.org/10.5281/zenodo.6497438

Open Reflectivity Data



Median error of improved neural network
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Test neural network on 
a test dataset of

242 curves

Dataset contains thin 
films of:
• DIP 
• PEN 
• PDI-C8 
• DNTT:PDIF 
• PDI-C8

Alexander Hinderhofer

Greco et al., J. Appl. Cryst. 55, 362 (2022)
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• All films are molecular thin films on a silicon substrate.

• Datasets should have a more diverse parameter variety.

Greco et al., J. Appl. Cryst. 55, 362 (2022)

Open Reflectivity Data
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Open Reflectivity Data

• To use experimental data for testing or 
training, the labelling is critical.

• Labels in our datasets were done by 
fitting with GenX or RefNX (Differential 
evolution)

• Importance sampling (IS) shows that 
SLD labels can still be improved. 

• There can be non-unique fitting 
solutions even in simple models.

Starostin et al., in preparation Scan number
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GIWAXS data analysis

≈ 0.1˚
Grazing-incidence

geometry

X-ray beam

Sample surface

Information about 

the sample:

o crystal structures 

o unit cell orientations

o fractions of coexisting phases

o lattice parameters

o …

Peak positions & sizes & intensities In situ measurements

ML Peak
Detection

Automated 
analysis

≈100k images / day - automated analysis is essential
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Deep learning peak detection pipeline

𝒕 = 𝟑𝟎𝟎 𝒔

o Images converted to polar 
coordinates

o Optimized lightweight two-stage 
peak detection architecture

o Asymmetric feature maps to 
address the specifics of the data 
geometry  

Starostin, V. et al. npj Comput Mater 8, 101 (2022)
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Deep learning peak detection pipeline

𝒕 = 𝟑𝟎𝟎 𝒔

Compressed image for prolonged peaks

Large resolution for small segments

Starostin, V. et al. npj Comput Mater 8, 101 (2022)
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Trained on the simulated data

𝒕 = 𝟑𝟎𝟎 𝒔

a b c d

efgh

a. Simulate random peak 
positions & intensities

b. Filter out strong 
overlaps

c. Generate 2D 
Gaussian peaks

d. Modulate intensities by 
Perlin noise

e. Add backgroundsf. Add noiseg. Add dark areash. Smooth & correct 
contrast

o Material-agnostic image simulation 
with counting statistics, 
experimental artifacts, background 
scattering.

o Near-ideal performance on the 
simulated data

Matched peaks 99.22 % 

False negatives 0.78 %

False positives 0.25 %
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Matching detected peaks with crystal structures

𝒕 = 𝟏𝟎𝟎 𝒔

𝒕 = 𝟑𝟎𝟎 𝒔

(a) (c)

(d)(b)

Simulated diffraction profile for 
the expected crystal structure

Start of the crystallization process

The detected peaks (d) are matched against 
a set of expected crystal structures and the 
corresponding simulated diffraction peaks.

The matching is performed for each time-
frame of in situ measurements (b).

Based on the matching results, we can 
extract integrated intensities corresponding 
to the matched structures (a)
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Starostin, V. et al. npj Comput Mater 8, 101 (2022)



Automated phase & lattice parameters determination 

Identified radial peak positions vs time 
pinpoint the start of the crystallization 
processes

Lattice parameter refinement reveals a 
shift in spacer molecule length. Such 
subtle processes are frequently 
overlooked by the manual analysis

Matching algorithm identifies 
structures based on detected peaks

Starostin, V. et al. npj Comput Mater 8, 101 (2022)

𝒕 = 𝟏𝟎𝟎 𝒔

𝒕 = 𝟑𝟎𝟎 𝒔
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Tested on the experimental data

𝒕 = 𝟑𝟎𝟎 𝒔

Metric
Master / 
Bachelor 
students

Deep 
learning
model 

High confidence peaks 
detected

96 % 95 %

Medium confidence 
peaks detected

86 % 76 %

Low confidence peaks 
detected

74 % 42 %

Share of false positives 18 % 7 %

Time per image 2 hours 8 ms

Test results on the experimental data
Designed GUI for GIWAXS data annotation

o 3 confidence levels (high, med, low)

o ML predicts lower number of false positives compared to students

o Low intensity peaks are still hard to detect
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Starostin, V. et al. npj Comput Mater 8, 101 (2022)
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35 GIWAXS images with ~1600 fitted peaks

Labelled experimental data

C. Voelter, et al., in preparation
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Neural network is part of the mlreflect package

• Available on GitHub

• Installable via PyPI

• Online documentation available on Read the Docs

• Can be used with Jupyter notebooks as GUI

• Is already installed on our home XRR machine

• Also installed at DESY, PETRA III

• New “prior aware” model allows definition of more 
complex models without retraining 
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Python package mlreflect was developed for a BMBF project 
in collaboration with DESY

Alexander Hinderhofer

Greco et al., J. Appl. Cryst. 55, 362 (2022)
Munteanu et al., submitted



Conclusion
• Large labeled datasets for surface scattering (reflectometry + 

GIWAXS) are very rare.

• Issue 1: Collecting diverse data 

• Issue 2: Preparing high quality labels for collected data

• Develop ML tools to enhance labeling process
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XRR/NR
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