

Diagnostics for SLS2.0

DEELS 2024, Synchrotron SOLEIL

Cigdem Ozkan Loch
Electron Beam Instrumentation group

$SLS \rightarrow SLS 2.0$

Timeline

courtesy of Dr. R. Ganter

SLS Dismantling

September 30th, 2023: SLS was switched OFF

Dismantling went according to plan

October: Removal of all tunnel roof bars

Removal of all cable trays and cooling distribution along Ring Removal of all re-used components: 3HC, Kickers, Undulators, ... Removal of RF modulator & Klystron and most of Electrical cabinets

Removal of all front ends

November: Removal of all girders with magnets

December: Tunnel floor painted

courtesy of Dr. R. Ganter

Give away

- 14 sets of Bergoz BPM electronics (2 per set) available for free...!!!
- They were installed around the IDs, integrated to a position interlock signal to the MIS once the beam would extend a pre-defined position offset.

Arc vacuum chamber

18m arc assembly

- Installation procedure validated
 - ... minor corrections of cooling pipes.

Installation

- Arc assembly and alignment at off-site assembly/storage location
- Girder pre-aligned and installed on ground plates
- Permanent magnet dipoles are on slides and pushed into place after the vacuum chamber is completed
- One arc installed every two weeks
- Most cables prepared in factory and installed in bundles (length + plug)
- Radial position of consecutive magnets within +/- 60µm
- Longitudinal position of magnets are within +/- 500µm

Then and now...

October 2023

January 2024

February 2024

April 2024

4 arcs installed 5th almost complete

Other systems

Magnet assembly and tests proceeding in a timely fashion

Quadrupole Series: 112 / 112 ready
Steerers: 117 / 117 ready
Sextupoles: 194 / 270 ready
Octupoles: 194 / 268 ready
Triplet Bending magnet: 26 / 60 ready

Reverse Bends: 104 / 150 ready (2 per day)

Cross talk measurements on going to check against simulation results

- All power supplies have been made, tested and are being installed into the racks
- BPMs (mechanics and electronics) are on the right track

courtesy of Dr. R. Ganter

Other systems

Four cavities at PSI:

- 1 cavity already conditioned to 600 kV
- 1 cavity under conditioning in a test stand

Location of Solid state amplifiers (SSA) 500 MHz / 150 kW, 4 units Delivery schedule is tight

courtesy of Dr. R. Ganter

Inherited Devices

Beam Size Monitors

Baseline systems

Purpose

Sensitive for lifetime

Low charge on-axis injection

Coupling and emittance measurements,

stability diagnostics, energy spread

Current Monitor (Bergoz PCT)	Storage Ring Current, Transmission Efficiency and Lifetime	0-400mA to 0.1mA	Adapt mechanically New DAQ system
Charge Monitors (Bergoz ICT)	Transfer efficiency	0-400pC to 1%	New DAQ system
Fill Pattern Monitor	Synchronization of the injection chain to refill any electron bucket, to keep desired storage ring filling pattern	Sufficient bandwidth & gain to resolve single electron buckets	Relocate New DAQ system
Streak Camera	Bunch length measurement	2ps resolution every 100ms	Relocate to new BL
New Devices	Purpose	Requirements	for SLS 2.0
Screen Monitors in BRTL	Emittance and Twiss parameter measurement from booster	< 10µm/pixel, higher sensitivity (< 10pC), 20mmx20mm FOV	New design New controls
Loss Monitors	Protecting and positioning beam within IDs Scraper optimization	Locating losses in BRTL and SR Turn-by-turn	New

Requirements

and rep rate

Sensitive to low currents, high dynamic range

2 new front ends

for SLS 2.0

Booster-to-Ring Transfer Line

Screen Monitor

Screen Monitor (injection straight)

- ✓ stable regarding CBI from long./transv. HOMs
- ✓ max. dissipated power: 11.1W/SiC + 1.4W on beam pipe

Storage Ring Beam Size Monitor

Horizontal emittance	Open IDs, low current	150 pm
	Closed IDs, 400mA	136 pm
	Nominal	157 pm
Vertical emittance	1-2% coupling	2-3 pm
	Nominal	10 pm
	Range of operation	8-12 pm

Vertical emittance change of 1pm $\rightarrow \sigma_y$ =400 nm Horizontal emittance of 7pm $\rightarrow \sigma_x$ =250nm

Diagnostics front end

Fresnel Zone Plates

- Nominal beam size at the BM: 8.6 x 6.8µm²
- Vertical beam size variation: 2-28µm
 Horizontal beam size variation: 5-12µm
- Outermost zone width is 120nm
 - due to 1st ZP demagnification →~650nm_at source plane
 - spatial resolution of 2nd ZP is ~146nm
 - with detector sampling of 2.5x → sampling at electron beam size plane ~260nm
- Source point CZP: 7500mm
- CZP MZP: 1748.6mm
- MZP detector: 1589.8mm
- FOV at source: 35μm x 35μm
- Effective Magnification: 5
- Central Stop Size: 0.79mm

11.8keV

Arc01/1st dipole: emittance measurement

Arc08/standard dipole : dispersion dominant

Longitudinal Loss Monitor

Current monitor: archeological findings

Same DAQ solution as ICTs

Loss Monitors for Surveillance

30 sec 5min 1h

BLM_watchGraphes_XX.ui

Scintillator geometry

- 7 per arc
- Downstream of every undulator
- 5 in the Booster-to-Ring transfer line
- PETG housing & brass screws to avoid disturbing magnetic axis

age 2

BLMs for TbT loss detection

Dose rate monitoring

- Track accumulated dose and dose rate changes at strategic locations
- Operation in 25V bias mode
- Minimum integration time 20 seconds
- · No feedbacks planned
- Change the connectors to RJ45 (thanks to S. Grulja) \rightarrow temperature reading lost

Additional locations:

- downstream of collimators and in line of sight in downstream arcs
- one at reference position (last triplet of last arc)

So far

- ✓ Motion control hardware
- ✓ Pneumatics control hardware
- ✓ DAQ system (ICT, PCT, Booster PCT)
- √ Screen monitors (chambers and components)
- ✓ BLMs, BLDs
- ✓ 3D printing
- ✓ Most beamline components

Forecast 2024

A. Fazan A. Foskolos R. Ischebeck

A. Streun M. Boege J. Kallestrup V. Schlott S. Bettoni M. Aiba

A. Stampfli A. Stark M. Baldinger Y. El Yamani

Safety **Project Management** Alignment **Electronics hardware** Hall services **Firmware 3D Mech Construction** Vaccum Cabling Controls TECH COORDINATION & LOGISTICS **Operations** Cooling IT & Network Flectrical installation SPS/PLC systems Radiation Protection