

BPMs design for ALBA II

L. Torino

Diagnostics Experts for European Light Sources 10/06/2024

ALBA Vs ALBA II

L. Torino

ALBA Vs ALBA II

L. Torino

ALBA Vs ALBA II

Beam Position Monitors for ALBA II

Beam Stability better than 100 nm for frequencies higher than 200 Hz

- ▶ 9 or 10 BPMs per Cell
- 9 BPMs/Correctors used for feedback
- 1 spare BPM as electromagnetic pickup (Only in compatible cells)

	ALBA	ALBA II
V.C. Shape	Flat	Round
V.C. Dimensions	Height: 28mm Width: 72mm	Diameter: 16mm
V.C. Material	Stainless Steel	Copper
Thickness	3mm	1mm
BPM Radius	3.5mm	2-3mm
Gap	300um	200-300um
Thickness	4mm	2-4mm

ALBA BPMs are already quite compact

L. Torino

4th MAC meeting 21-22 March 2006

ALBA BPMs are already quite compact

4th MAC meeting 21-22 March 2006

DEEL S24

The BPM design was conceived as a **miniaturization** of ALBA Booster BPMs keeping ALBA Storage Ring BPMs characteristics

Analytical studies and CST simulation were performed:

- Maximize transfer impedance
- Minimize longitudinal coupling impedance
- ➤ TE11 Modes out of the bunch spectrum
- Optimize resolution

Vacuum chamber is smaller for ALBA II →
We are closer to the beam
High transfer and low coupling also with a
small BPM radius (good for TE11)

$$r_b = 2 \,\mathrm{mm}$$
 $g = 200 \,\mathrm{\mu m}$

BPMs Design - Analytical

BPMs Design – Analytical

L. Torino

BPMs Design - Optimization (CST)

Longitudinal Impedance

Dissipated Power (Bun. Len $= 5.5 \,\mathrm{ps}$)

BPM Design - Expected Signal

BPMs Design - Material Optimization (CST+MBTrack II)

BPMs Design - Material Optimization (CST+MBTrack II)

Borosilicate Glass

BPMs - Thermal Simulations (CST/ANSYS)

Borosilicate Glass, $I = 250 \,\mathrm{mA}$

Bunch. Len $= 5 \, ps$

Bunch. Len $= 15 \, ps$

BPMs Design

ALBA II BPMs characteristics:

► Chamber diameter: 16 mm

▶ Button diameter: 4 mm

► Gap: 200 µm

► Insulator diameter: 4.4 mm

► No "skirt"

▶ Block thickness: 12 mm

Block Material: Stainless Steel 316LN

► Button Material: Molybdenum

▶ Insulator Material: Borosilicate Glass

5 companies were contacted:

- Kyocera
- ► BC-Tech
- Solcera
- Alettra
- ► MDC Precision

5 companies were contacted:

- ▶ Kyocera √
- **BC-Tech** ✓ → Different Material
- Solcera
- ► Alettra ✓
- ► MDC Precision

5 companies were contacted:

- ▶ Kyocera √
- BC-Tech ✓ → Different Material
- Solcera
- ► Alettra ✓
- ► MDC Precision

Buttons will be produced by one company and sent to the producer of the vacuum chamber to be welded

BC-Tech proposal

Based on experience with PETRA IV and SLS 2.0 BC-Tech proposes:

- Case Material: Stainless Steel 316L
- Button Material: Hastelloy + gold plating
- ► Insulator Material: Borosilicate Glass

Doubt on magnetic characteristics of Hastelloy...

1.5 2 2.5 3 3.5

4 4.5 5 5.5

A gear type bellow, gap 4 mm has been selected. Only BPMs in the arc will have 1 bellow per side to absorb thermal dilatation

*H. O. C. Duarte . IPAC2019. Melbourne. Australia 2019 MOPGW001

BPMs Block Prototyping

We will produce:

- ▶ 2 simple BPMs Block with BPMs and NEG coating
 - ► One by BC-Tech the other by Kyocera
- ▶ 1 chamber with bellow without BPMs and no NEG for mechanical tests
- ▶ 1 chamber with bellow with BPMs (2 from Kyocera and 2 from BC-Tech) and NEG coating to be installed in ALBA (Summer 2026)

- First BPM button and chamber design is ready
- ▶ Button radius = 2 mm
- ▶ Gap = 200 µm
- ▶ Optimization of material maintaining a simple shape

To be done:

- Simulation of BPM block + bellow
- Understand effects of NEG coating
- Prepare a test-bench for BPM block and buttons testing
- Understand effect of non-Gaussian beam generated by 3rd harmonic RF

Many thanks to:

O. Traver (BPMs draft)
M. El Ajjouri (Soleil, CST

simulations)

G. Kube (DESY, Borosilicate Glass discussion)

Diagnostics Community