

SOLEIL present storage ring

SOLEIL present storage ring

- Storage ring: 354 m circumference
- Lattice: DBA + distributed dispersion
- ϵ_x =3.9 nm.rad ; ϵ_y =40 pm.rad
- 29 beamlines

SOLEIL-II (project) storage ring

Non standard 7BA/4BA CDR lattice

SOLEIL-Upgrade lattice

- Lattice: non-standard 7 DBA + 4 DBA
- ϵ_x =84.4 pm.rad ; ϵ_y =25.3 pm.rad

Beam sizes and emittances for SOLEIL-II

• SOLEIL vs. SOLEIL-II parameters:

Machine	SOLEIL	SOLEIL-II Nominal / Machine tuning
ϵ_x (pm.rad) ϵ_y (pm.rad) σ_x in dipoles (μ m-RMS) σ_y in dipoles (μ m-RMS)	4000 40 45–75 25	84.4 / 90 25.3 / 1 7 / 6.6–7.5 12.4 / 2.4–18.3

- Specifications for $\epsilon_{x,y}$ ($\sigma_{x,y}$) measurement:
 - $-\epsilon_{x,y}$ measurement with sub–pm resolution
 - $ightarrow \sigma_{x,y}$ measurement with sub- μ m resolution
 - $-\epsilon_{x,y}$ (nominal) measurement at >100 Hz repetition rate
 - High reliability for $\epsilon_{x,y}$ (nominal) measurement

Strategy for emittances measurements

- Development of 2 types of diagnostics beamlines, both based on dipole SR analysis:
 - Two (similar) X-ray range beamlines:
 - SR source: high-field (3 T) dipoles
 - Technique: Pinhole camera imaging with \approx 1 μ m $-_{\text{RMS}}$ resolution
 - One near—UV / visible beamline:
 - SR source: low-field (0.6 T) dipole
 - Technique: Polarized imaging with \approx 5 μ m $-_{RMS}$ resolution (??)

X-ray range beamlines >> Principle

Principle:

- Image source point with a pinhole onto a scintillator
- Image scintillator onto a camera using a microscope objective
- Deconvolve beam size on scintillator (image plane) from PSF (relying on SRW)
- Retrieve beam size at source point (relying on accurate measurement of beamline magnification)
- Retrieve emittances at source point (relying on accurate modeling of optical functions)

X-ray range beamlines >> Principle

Parameter	SOLEIL		SOLEIL-II
	PHC-C02	PHC-C16	PHC-C08 and PHC-C18 >> nominal / low-coupling mode
sigma_x at source (µm-rms)	45	62	7.1 / 7.2
sigma_y at source (µm-rms)	24	21	12.4 / 2.5
d (m)	4338	4335	2505
D (m)	5730	5716	12495
Pinhole Magnification (-)	1.32	1.32	4.99
X-imager magnification (-)	2.2	2.55	9
X-imager resolution (pixel)	1	1	2
Camera pixel size (µm)	7.4	7.4	7.4
Resolution at image (scintillator) (µm-rms)	3.36	2.90	1.64
Resolution at source (µm-rms)	2.55	2.2	0.33
Adding sensitivity criteria: >> Minimum measurable beam size at source (µm-rms)	25	29	2.5
Using a Voigt function for PSF deconvolution: >> Minimum measurable beam size at source (µm-rms)	~7	~7	~1

Difficult point = PSF deconvolution... → Let's test it on SOLEIL present storage ring...

Experimental setup @ SOLEIL

Machine settings:

- Specific cycling to obtain a symmetric machine
- Minimum coupling to reach minimum ϵ_y
- -I < 10 mA to :
 - operate with BbB feedback OFF
 - limit the power density on the scintillator when pinhole and copper absorber are removed
- Reached emittances: $\epsilon_x pprox$ 5 nm.rad ; $\epsilon_y pprox$ 8 pm.rad
- PHC1 settings = "standard":
 - Pinhole size: 15 x 10 μ m, Copper attenuator thickness: 1 mm
 - Exposure time: few hundreds of ms

- Emittance dependency to beam displacements at source point by \approx 20-50 μ m:
 - $-\approx$ nm.rad variations in H plane i.e. >10%
 - $-\approx$ few pm.rad variations in V plane i.e. >10%
 - Never seen before !!!

• Once the pinhole removed >> SR layer appears "filamented" ??!!

- Performing emittance measurements versus pinhole block in Y....
- ... Emittance seems correlated to the filament structure

- Performing emittance measurements versus pinhole block in Y....
- ... Emittance seems correlated to the filament structure
 - → But where are these filaments coming from ???

Are these filaments specific to SOLEIL?

SR pattern recorded without pinhole at (left) Diamond Light source and (right) ESRF-EBS at minimum vertical emittance. Courtesy L. Bobb, N. Vitoratou and F. Ewald.

- NO!
- Same filaments observed at Diamond Light Source and ESRF-EBS...

Filaments / Al UHV window correlation....

◆ After quite some tests (especally bumps)
 → Filaments seem to be due to the Al UHV window

Aluminium UHV windows of (from left to right) SOLEIL, ESRF, DLS.

• BUT:

- It can not be a simple transmission issue due to some bulk impurities
 - \rightarrow Windows are all nearly "pure" or melted with similar Z materials
- It can't be neither a diffraction effect
 - → Filaments are too small even for small angle diffraction

Al window \rightarrow phase contrast imaging ?

15

• After quite some discussions with many SOLEIL beamline scientists...

(CRISTAL, PSYCHE, ANATOMIX, METROLOGY)

→ We might be simply making phase contrast imaging of our Al window...

Al window → phase contrast imaging ?

16

• And indeed: our (at least at SOLEIL) Al window surface is just ... "crap"

Picture of the Aluminium UHV window of SOLEIL.

Al window → phase contrast imaging ?

17

- Additionnal tests to confort this track:
 - Filamentation versus ϵ_y : the smaller $\epsilon_y \to$ the more pronounced the filaments

(= matching with a more vertically coherent beam)

- Filamentation versus Cu thickness: the thicker $Cu \rightarrow the$ more blurred the filaments

(= matching with a softer X-ray beam, coherence reduced)

→ Both tests in good agreement with phase contrast theory

How to get rid of these filaments?

- "Parasitic" phase contrast imaging from UHV windows
 a well known issue on several beamlines
- Solutions "known" from several beamlines:
 - (1) A decoherer = random / rotating structure to blur the phase interferences
 → 1 k€
 - (2) A high quality (<nm surface polish) diamond window
 → 25 k€
- Solution "not yet explored":
 - (3) Why not a high quality surface Al window?
 - → 15 k€

(1) Tests of a decoherer

- Experimental setup:
 - A wheel
 - Several types of Al disks: foam or plane with different levels of roughness

19

From left to right: wheel, foam disk, plane disk, wheel installed.

- Wheel installed instead of pinhole, i.e. just downstream Al window

(1) Tests of a decoherer

20

• Experimental results:

→ As predicted by Metrology beamline scientist: "it's not enough..."

(3) Test of Al plates with different surface qualities

- Before moving to an expensive Diamond window....
- We will test the effect of more finely polished Al plates on filaments
- Test bench = Metrology beamline → beginning July ?
 - Same SR source (a 1.7 T dipole)
 - Same distance UHV window Scintillator + Imager (=6.1 m)
 - Possible insertion of various types of windows / plates
 - ... including a diamond window

From left to right: beamline metrology, X-imager on its stand, X-imager, X-imager drawing.

- Willing to test our PHCs towards low vertical emittance measurements....
- ... We faced an unexpected issue:
 - SR filamentation in the image plane
 - A filamentation strongly pertubating the emittance measurement
- This filamentation was found to result from... phase contrast imaging of our Al window
- Possible solutions:
 - A decoherer \rightarrow tested \rightarrow not efficient enough
 - A higly polished Al window → to be tested
 - A high quality diamond window \rightarrow it's THE solution on beamlines ...though expensive, we might endup with it...
- Many thanks to:
 - F. Ewald, L. Bobb and N. Vitoratou for offering their time to make dedicated measurements and helping us solving this issue.

→ QUESTIONS ???

