

New interferometric aperture masking technique for full transverse beam characterization using synchrotron radiation

C. Carilli, U. Iriso, B. Nikolic, N. Thyagarajan, L. Torino ltorino@cells.es
DEELS 2024, Soleil
10/06/2024

Synchrotron Radiation Interferometry (SRI)

$$I = I_0 \left\{ rac{\mathsf{J}_1\left(rac{2\pi a \mathsf{x}}{\lambda f}
ight)}{\left(rac{2\pi a \mathsf{x}}{\lambda f}
ight)}
ight\}^2 imes \left\{ 1 + V \cos\left(rac{2\pi D \mathsf{x}}{\lambda f}
ight)
ight\}$$

$$\sigma = \frac{\lambda L}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}}$$

- *I*₀: Intensity
- a: Pinholes radius
- λ : SR wavelength
- f: Focal distance of the optical system
- D: Pinholes distance
- V: Visibility
- L: Distance from the source

Transverse Beam Reconstruction – 4 Projections

Transverse Beam Reconstruction - Results 4 Projections

L. Torino and U. Iriso IBIC 2016, Barcelona, WEBL03 L. Torino and U. Iriso PRST-AB. 19, 122801 (2016)

L. Torino

Image Vs Fourier plane

- ► Fringes:
 - ightarrow aperture separation
 - $\to \mathsf{pinhole}\;\mathsf{radius}$
- ► Visibility:
 - \rightarrow pinhole illuminations
 - \rightarrow real visibility (γ)

DEELS24

Image Vs Fourier plane

- ► Fringes:
 - \rightarrow aperture separation
 - \rightarrow pinhole radius
- Visibility:
 - \rightarrow pinhole illuminations
 - \rightarrow real visibility (γ)

- ► Separation between peaks:
 - \rightarrow aperture separation
 - $\to \mathsf{pinhole}\;\mathsf{radius}$
- Intensity of peaks:

L. Torino

- \rightarrow pinhole illumination
- \rightarrow real visibility (γ)

- Central peak: "auto-correlation"
 - $I_{00} \propto i_{a0} + i_{a1}$
- ► Upper (lower) peak:

$$I_{01} \propto \sqrt{i_{a0}} \times \sqrt{i_{a1}} \times \gamma$$

 $v \propto L$

 I_{00} : Intensity central peak in the Fourier plane

 \emph{l}_{01} : Intensity peak in the Fourier plane related with apertures $\emph{a}0$ and $\emph{a}1$

 i_a : Illumination of the aperture

 γ : Real visibility

v: Distance between l_{00} and l_{01} D: Distance between pinholes

FFT Image

Normalizing for the central peak intensity:

$$I_{00} = 1$$
 $I_{01} \propto \frac{\sqrt{i_{a0} \times i_{a1}}}{i_{a0} + i_{a1}} \gamma$

- Central peak: "auto-correlation"
 - $I_{00} \propto i_{a0} + i_{a1}$
- ► Upper (lower) peak:

$$I_{01} \propto \sqrt{i_{a0}} \times \sqrt{i_{a1}} \times \gamma$$

 $ightharpoonup v \propto D$

 I_{00} : Intensity central peak in the Fourier plane

 I_{01} : Intensity peak in the Fourier plane related with apertures a0 and a1

 i_a : Illumination of the aperture

 γ : Real visibility

v: Distance between I_{00} and I_{01}

D: Distance between pinholes

FFT Image

Normalizing for the central peak intensity:

$$\begin{array}{c}
I_{00} = 1 \\
I_{01} \propto \frac{\sqrt{i_{a0} \times i_{a1}}}{i_{a0} + i_{a1}} \gamma \\
\rightarrow I_{01} \Leftrightarrow V
\end{array}$$

V : measured visibility in image plane
Assuming a Gaussian non tilted beam and knowing

$$i_{a0}$$
 and i_{a1} (or that $i_{a0}=i_{a1}$)

ightarrow Fit the two points with a normalized Gaussian $(\sigma_{\mathcal{C}})$ free parameter:

$$I(v) = e^{-v^2/2\sigma_C^2}$$

- Central peak: "auto-correlation"
 - $I_{00} \propto i_{a0} + i_{a1}$
- ► Upper (lower) peak:

$$I_{01} \propto \sqrt{i_{a0}} \times \sqrt{i_{a1}} \times \gamma$$

$$ightharpoonup v \propto D$$

 I_{00} : Intensity central peak in the Fourier plane

 I_{01} : Intensity peak in the Fourier plane related with apertures a0 and a1

 i_a : Illumination of the aperture

 γ : Real visibility

v: Distance between I_{00} and I_{01}

D: Distance between pinholes

FFT Image

Normalizing for the central peak intensity:

$$\begin{array}{c}
I_{00} = 1 \\
I_{01} \propto \frac{\sqrt{i_{a0} \times i_{a1}}}{i_{a0} + i_{a1}} \gamma \\
\rightarrow I_{01} \Leftrightarrow V
\end{array}$$

 $V: \mathbf{measured}$ visibility in image plane Assuming a Gaussian non tilted beam and knowing

$$i_{a0}$$
 and i_{a1} (or that $i_{a0}=i_{a1}$)

 \rightarrow Fit the two points with a normalized Gaussian (σ_C) free parameter:

$$I(v) = e^{-v^2/2\sigma_C^2}$$

 σ_C : Coherence length Converting the coordinates:

$$\sigma = \frac{\lambda L}{\pi \sigma c}$$

Central peak: "auto-correlation"

$$I_{00} \propto i_{a0} + i_{a1}$$

► Upper (lower) peak:

$$I_{01} \propto \sqrt{i_{a0}} \times \sqrt{i_{a1}} \times \gamma$$

$$ightharpoonup v \propto D$$

 \emph{I}_{00} : Intensity central peak in the Fourier plane

 I_{01} : Intensity peak in the Fourier plane related with apertures a0 and a1

 i_a : Illumination of the aperture

 γ : Real visibility

v: Distance between I_{00} and I_{01}

D: Distance between pinholes

More apertures...

We have 4 independent peaks in the Fourier space:

- ► $I_{012} \propto i_{a0} + i_{a1} + i_{a2}$ (Before Normalization)
- $ightharpoonup I_{01} \propto rac{\sqrt{i_{a0} imes i_{a1}}}{i_{a0}+i_{a1}+i_{a2}} \gamma_{a0-a1}$
- $I_{02} \propto \frac{\sqrt{i_{a0} \times i_{a2}}}{i_{a0} + i_{a1} + i_{a2}} \gamma_{a0-a2}$
- $\blacktriangleright I_{12} \propto \frac{\sqrt{i_{a1} \times i_{a2}}}{i_{a0} + i_{a1} + i_{a2}} \gamma_{a1-a2}$

More apertures...

We have 4 independent peaks in

 $ightharpoonup I_{012} \propto i_{a0} + i_{a1} + i_{a2}$ (Before Normalization)

$$I_{01} \propto \frac{\sqrt{i_{a0} \times i_{a1}}}{i_{a0} + i_{a1} + i_{a2}} \gamma_{a0-a1}$$

$$I_{02} \propto \frac{\sqrt{i_{a0} \times i_{a2}}}{i_{a0} + i_{a1} + i_{a2}} \gamma_{a0-a2}$$

$$I_{12} \propto \frac{\sqrt{i_{a1} \times i_{a2}}}{i_{a0} + i_{a1} + i_{a2}} \gamma_{a1-a2}$$

Even more apertures...

Even more apertures...

Parameter to reconstruct a Gaussian beam:

- $ightharpoonup \sigma_x$, σ_y , Φ
- ► i_{a0}, i_{a1}, i_{a2}, i_{a3}, i_{a4}

We have 9 points, just enough!

Even more apertures...

Parameter to reconstruct a Gaussian beam:

- $ightharpoonup \sigma_x$, σ_y , Φ
- ► i_{a0}, i_{a1}, i_{a2}, i_{a3}, i_{a4}

We have 9 points, just enough!

Self Calibration

Results 5 Holes Mask

Beam size results are compatible with the one obtained with rotating mask SRI!

L. Torino DEELS24

Non Redundant Aperture Mask

It is important to define a non redundant mask to avoid Bluring in the real and in the Fourier space

Red and Black redundant pinhole combination

*C. Carilli et al., arXiv:2406.02114, https://doi.org/10.48550/arXiv.2406.02114

Non Redundant Aperture Mask

It is important to define a non redundant mask to avoid Bluring in the real and in the Fourier space

It is super-important fit and correct illuminations!

Red and Black redundant pinhole combination

*C. Carilli et al., arXiv:2406.02114, https://doi.org/10.48550/arXiv.2406.02114

Summary – 1

New technique for beam transverse characterization:

- Use non-redundant mask
- ► Fit and correct for aperture illuminations (Self Calibration)
- ► Work in the Fourier Space

These techniques are well known (separately) in radio-astronomy and for the first time they are united to characterize a photon source Advantages:

- Single shot measurement
- ▶ More light \rightarrow low exposure time (0.5 ms 250 mA, $\lambda = 540/400$ nm)
- ► More holes can improve the resolution
 - → Already tested 7 holes with promising results!

But we can do more!

7 Holes Non Redundant Mask

- ► Fourier space more filled and more complex → Library to find the baseline :)
- We have library to generate visibility, fit data and obtain the beam size (still β -version but working fine)
 - Bonus: Astropy

L. Torino DEELS24

More holes and Model Fitting

The idea is to fill the Fourier space and reconstruct an arbitrary image

Very Large Array Socorro, New Mexico

Summary – 2

- We developed a single acquisition full characterization of the electron beam using visible synchrotron radiation
- No worries about aperture illuminatins distribution
- Low impact of mirror deformation
- ► The technique is reliable and fast (low exposure time WRT pinhole)
- ▶ Data analysis can be optimized to be fast (< 100 ms)
- Possible arbitrary beam reconstruction (maybe islands... High dynamic range achievable!)
- ► Possible application for optical path characterization, coherence monitor in beamlines. ...

We can still learn a lot from astronomical measurement techniques!

*B. Nikolic et al., arXiv:2405.12090v2, https://doi.org/10.48550/arXiv.2405.12090
*C. Carilli et al., arXiv:2406.02114, https://doi.org/10.48550/arXiv.2406.02114