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Synchrotron Radiation Interferometry (SRI)
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I0: Intensity

a: Pinholes radius

λ: SR wavelength

f : Focal distance of the
optical system

D: Pinholes distance

V : Visibility

L: Distance from the
source
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Transverse Beam Reconstruction – 4 Projections
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Transverse Beam Reconstruction – Results 4 Projections
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L. Torino and U. Iriso IBIC 2016, Barcelona, WEBL03
L. Torino and U. Iriso PRST-AB, 19, 122801 (2016)
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Image Vs Fourier plane

▶ Fringes:
→ aperture separation
→ pinhole radius

▶ Visibility:
→ pinhole illuminations
→ real visibility (γ)

▶ Separation between peaks:
→ aperture separation
→ pinhole radius

▶ Intensity of peaks:
→ pinhole illumination
→ real visibility (γ)
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Fourier plane

▶ Central peak:
"auto-correlation"
▶ I00 ∝ ia0 + ia1

▶ Upper (lower) peak:
▶ I01 ∝ √

ia0 ×
√
ia1 × γ

▶ v ∝ D

I00: Intensity central peak in the
Fourier plane
I01: Intensity peak in the Fourier
plane related with apertures a0
and a1
ia: Illumination of the aperture
γ: Real visibility
v : Distance between I00 and I01
D: Distance between pinholes

*M.J. Boland and al., Proceedings of IBIC2012, Tsukuba, Japan, WECC03

Normalizing for the central peak intensity:
I00 = 1

I01 ∝
√
ia0×ia1
ia0+ia1

γ

→ I01 ⇔ V
V : measured visibility in image plane

Assuming a Gaussian non tilted beam and knowing
ia0 and ia1 (or that ia0 = ia1 )

→ Fit the two points with a normalized Gaussian
(σC) free parameter:
I (v) = e−v2/2σ2

C

σC : Coherence length
Converting the coordinates:

σ = λL
πσC
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More apertures...

We have 4 independent peaks in the Fourier space:
▶ I012 ∝ ia0 + ia1 + ia2 (Before Normalization)

▶ I01 ∝
√
ia0×ia1

ia0+ia1+ia2
γa0−a1

▶ I02 ∝
√
ia0×ia2

ia0+ia1+ia2
γa0−a2

▶ I12 ∝
√
ia1×ia2

ia0+ia1+ia2
γa1−a2

Assuming a Gaussian non tilted beam and knowing
ia0, ia1 and ia2 (or knowing that ia0 = ia1 = ia2)

→ Fit the three points with a normalized
2D-Gaussian (σCx and σCy as free parameter) in

each direction and retrieve the 2-D Beam
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Even more apertures...

Parameter to reconstruct a Gaussian beam:

▶ σx , σy , Φ
▶ ia0, ia1, ia2, ia3, ia4

We have 9 points, just enough!

Self Calibration
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Results 5 Holes Mask

Beam size results are compatible with the
one obtained with rotating mask SRI!
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Non Redundant Aperture Mask

It is important to define a non redundant mask to avoid Bluring in the real and in the
Fourier space

It is super-important fit
and correct illuminations!

Red and Black redundant pinhole combination
*C. Carilli et al., arXiv:2406.02114, https://doi.org/10.48550/arXiv.2406.02114
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Summary – 1

New technique for beam transverse characterization:
▶ Use non-redundant mask
▶ Fit and correct for aperture illuminations (Self Calibration)
▶ Work in the Fourier Space

These techniques are well known (separately) in radio-astronomy and for the first time
they are united to characterize a photon source
Advantages:
▶ Single shot measurement
▶ More light → low exposure time (0.5 ms 250 mA, λ = 540/400 nm)
▶ More holes can improve the resolution

→ Already tested 7 holes with promising results!

But we can do more!
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7 Holes Non Redundant Mask

▶ Fourier space more filled and more complex
→ Library to find the baseline :)

▶ We have library to generate visibility, fit data and obtain
the beam size (still β−version but working fine)

▶ Bonus: Astropy
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More holes and Model Fitting

The idea is to fill the Fourier space and reconstruct an arbitrary image
Very Large Array
Socorro, New Mexico
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Summary – 2

▶ We developed a single acquisition full characterization of
the electron beam using visible synchrotron radiation

▶ No worries about aperture illuminatins distribution
▶ Low impact of mirror deformation
▶ The technique is reliable and fast (low exposure time

WRT pinhole)
▶ Data analysis can be optimized to be fast (< 100 ms)
▶ Possible arbitrary beam reconstruction (maybe islands...

High dynamic range achievable!)
▶ Possible application for optical path characterization,

coherence monitor in beamlines, ...

We can still learn a lot
from astronomical

measurement techniques!

*B. Nikolic et al., arXiv:2405.12090v2, https://doi.org/10.48550/arXiv.2405.12090
*C. Carilli et al., arXiv:2406.02114, https://doi.org/10.48550/arXiv.2406.02114
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