

Characterizing Polarisation at the BESSY II Booster

P. Ahmels

Goal

Improving the optical diagnostic of the third generation light source booster:

- characterising the polarisation (linear & circular)
- optimizing working point at 550 nm
- research beamline to study polarisation

Fig. 1: Source point image on CCD camera

Goal

Improving the optical diagnostic of the third generation light source booster:

- characterising the polarisation (linear & circular)
- optimizing working point at 550 nm
- research beamline to study polarisation

Fig. 2: Radiation lobes for linear (σ) and circular (π) polarization

Quelle: H. Wiedemann: Particle Accelerator Physics, Fourth Edition S.877

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Fig. 3: Simplified Measurement Setup with Research beamline & diagnostic beamline

Hypothesis

Using linear optics:

- <u>> at focus point:</u> no difference between linear & circular polarisation
- → outside focus point:
 - o for circular: two spots
 - o for linear: one spot
- beam behaviour: similar on both sides of the focus (symmetry)

Fig. 4: Simulated beam behaviour at 550 nm with two lobes simplifying circular polarization

Results

Fig. 5: Results of circular polarization with two different lens position

Thank you for your attention!

DEELS 2024

Error Elimination Process

through:

- good alignment
- different filter, lens, energy
- other beamline

to do:

Characterizing the polarisation intensity over the energy ramp